skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence of CH{sub 2}O (a-tilde{sup 3}A{sub 2}) and C{sub 2}H{sub 4} (a-tilde{sup 3}B{sub 1u}) produced from photodissociation of 1,3-trimethylene oxide at 193 nm

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.2170084· OSTI ID:20783229
; ;  [1]
  1. National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

We investigated the dissociative ionization of formaldehyde (CH{sub 2}O) and ethene (C{sub 2}H{sub 4}) produced from photolysis of 1,3-trimethylene oxide at 193 nm using a molecular-beam apparatus and vacuum-ultraviolet radiation from an undulator for direct ionization. The CH{sub 2}O (C{sub 2}H{sub 4}) product suffers from severe dissociative ionization to HCO{sup +} (C{sub 2}H{sub 3}{sup +} and C{sub 2}H{sub 2}{sup +}) even though photoionization energy is as small as 9.8 eV. Branching ratios of fragmentation of CH{sub 2}O and C{sub 2}H{sub 4} following ionization are revealed as a function of kinetic energy of products using ionizing photons from 9.8 to 14.8 eV. Except several exceptions, branching ratios of daughter ions increase with increasing photon energy but decrease with increasing kinetic energy. The title reaction produces CH{sub 2}O and C{sub 2}H{sub 4} mostly on electronic ground states but a few likely on triplet states; C{sub 2}H{sub 4} (a-tilde{sup 3}B{sub 1u}) seems to have a yield greater than CH{sub 2}O (a-tilde{sup 3}A{sub 2}). The distinct features observed at small kinetic energies of daughter ions are attributed to dissociative ionization of photoproducts CH{sub 2}O (a-tilde{sup 3}A{sub 2}) and C{sub 2}H{sub 4} (a-tilde{sup 3}B{sub 1u}). The observation of triplet products indicates that intersystem crossing occurs prior to fragmentation of 1,3-trimethylene oxide.

OSTI ID:
20783229
Journal Information:
Journal of Chemical Physics, Vol. 124, Issue 7; Other Information: DOI: 10.1063/1.2170084; (c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English