skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules

Abstract

In the context of the French Laser-Megajoule fusion-research program, the hydrodynamic stability of the baseline direct-drive target is investigated at the hot spot surface during the deceleration phase by means of modeling and simulations. Using the convergence of the flow towards a self-similar solution, a closed system of ordinary differential equations is derived for the main hydrodynamic variables. An exact linear stability analysis is performed to compute the Rayleigh-Taylor growths. All theoretical predictions are compared to one-dimensional and two-dimensional single-mode detailed numerical results.

Authors:
; ; ; ; ;  [1];  [2];  [2];  [3]
  1. ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain)
  2. (France)
  3. (Spain)
Publication Date:
OSTI Identifier:
20782351
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 12; Journal Issue: 11; Other Information: DOI: 10.1063/1.2130315; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 36 MATERIALS SCIENCE; CAPSULES; DIFFERENTIAL EQUATIONS; HOT SPOTS; ICF DEVICES; INERTIAL CONFINEMENT; LASER TARGETS; LASER-PRODUCED PLASMA; LASERS; PLASMA SIMULATION; RAYLEIGH-TAYLOR INSTABILITY; RESEARCH PROGRAMS; STABILITY

Citation Formats

Sanz, J., Garnier, J., Cherfils, C., Canaud, B., Masse, L., Temporal, M., Laboratoire de Probabilites et Modeles Aleatoires and Laboratoire Jacques-Louis Lions, Universite Paris VII, 2 Place Jussieu, 75251 Paris Cedex 5, Commissariat a l'Energie Atomique, Direction des Applications Militaires, Boite Postale 12, 91680 Bruyeres-le-Chatel, and ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real. Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules. United States: N. p., 2005. Web. doi:10.1063/1.2130315.
Sanz, J., Garnier, J., Cherfils, C., Canaud, B., Masse, L., Temporal, M., Laboratoire de Probabilites et Modeles Aleatoires and Laboratoire Jacques-Louis Lions, Universite Paris VII, 2 Place Jussieu, 75251 Paris Cedex 5, Commissariat a l'Energie Atomique, Direction des Applications Militaires, Boite Postale 12, 91680 Bruyeres-le-Chatel, & ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real. Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules. United States. doi:10.1063/1.2130315.
Sanz, J., Garnier, J., Cherfils, C., Canaud, B., Masse, L., Temporal, M., Laboratoire de Probabilites et Modeles Aleatoires and Laboratoire Jacques-Louis Lions, Universite Paris VII, 2 Place Jussieu, 75251 Paris Cedex 5, Commissariat a l'Energie Atomique, Direction des Applications Militaires, Boite Postale 12, 91680 Bruyeres-le-Chatel, and ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real. Tue . "Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules". United States. doi:10.1063/1.2130315.
@article{osti_20782351,
title = {Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules},
author = {Sanz, J. and Garnier, J. and Cherfils, C. and Canaud, B. and Masse, L. and Temporal, M. and Laboratoire de Probabilites et Modeles Aleatoires and Laboratoire Jacques-Louis Lions, Universite Paris VII, 2 Place Jussieu, 75251 Paris Cedex 5 and Commissariat a l'Energie Atomique, Direction des Applications Militaires, Boite Postale 12, 91680 Bruyeres-le-Chatel and ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real},
abstractNote = {In the context of the French Laser-Megajoule fusion-research program, the hydrodynamic stability of the baseline direct-drive target is investigated at the hot spot surface during the deceleration phase by means of modeling and simulations. Using the convergence of the flow towards a self-similar solution, a closed system of ordinary differential equations is derived for the main hydrodynamic variables. An exact linear stability analysis is performed to compute the Rayleigh-Taylor growths. All theoretical predictions are compared to one-dimensional and two-dimensional single-mode detailed numerical results.},
doi = {10.1063/1.2130315},
journal = {Physics of Plasmas},
number = 11,
volume = 12,
place = {United States},
year = {Tue Nov 15 00:00:00 EST 2005},
month = {Tue Nov 15 00:00:00 EST 2005}
}