skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Roles for herpes simplex virus type 1 U{sub L}34 and U{sub S}3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress

Abstract

Cells infected with wild type HSV-1 showed significant lamin A/C and lamin B rearrangement, while U{sub L}34-null virus-infected cells exhibited few changes in lamin localization, indicating that U{sub L}34 is necessary for lamin disruption. During HSV infection, U{sub S}3 limited the development of disruptions in the lamina, since cells infected with a U{sub S}3-null virus developed large perforations in the lamin layer. U{sub S}3 regulation of lamin disruption does not correlate with the induction of apoptosis. Expression of either U{sub L}34 or U{sub S}3 proteins alone disrupted lamin A/C and lamin B localization. Expression of U{sub L}34 and U{sub S}3 together had little effect on lamin A/C localization, suggesting a regulatory interaction between the two proteins. The data presented in this paper argue for crucial roles for both U{sub L}34 and U{sub S}3 in regulating the state of the nuclear lamina during viral infection.

Authors:
 [1];  [2]
  1. Department of Microbiology, The University of Iowa, 3115 Medical Laboratories, Iowa City, IA 52242 (United States)
  2. Department of Microbiology, The University of Iowa, 3115 Medical Laboratories, Iowa City, IA 52242 (United States). E-mail: richard-roller@uiowa.edu
Publication Date:
OSTI Identifier:
20779478
Resource Type:
Journal Article
Resource Relation:
Journal Name: Virology; Journal Volume: 347; Journal Issue: 2; Other Information: DOI: 10.1016/j.virol.2005.11.053; PII: S0042-6822(05)00800-7; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APOPTOSIS; GENE REGULATION; HERPES SIMPLEX; PROTEINS; VIRUSES

Citation Formats

Bjerke, Susan L., and Roller, Richard J.. Roles for herpes simplex virus type 1 U{sub L}34 and U{sub S}3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. United States: N. p., 2006. Web. doi:10.1016/J.VIROL.2005.1.
Bjerke, Susan L., & Roller, Richard J.. Roles for herpes simplex virus type 1 U{sub L}34 and U{sub S}3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. United States. doi:10.1016/J.VIROL.2005.1.
Bjerke, Susan L., and Roller, Richard J.. Mon . "Roles for herpes simplex virus type 1 U{sub L}34 and U{sub S}3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress". United States. doi:10.1016/J.VIROL.2005.1.
@article{osti_20779478,
title = {Roles for herpes simplex virus type 1 U{sub L}34 and U{sub S}3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress},
author = {Bjerke, Susan L. and Roller, Richard J.},
abstractNote = {Cells infected with wild type HSV-1 showed significant lamin A/C and lamin B rearrangement, while U{sub L}34-null virus-infected cells exhibited few changes in lamin localization, indicating that U{sub L}34 is necessary for lamin disruption. During HSV infection, U{sub S}3 limited the development of disruptions in the lamina, since cells infected with a U{sub S}3-null virus developed large perforations in the lamin layer. U{sub S}3 regulation of lamin disruption does not correlate with the induction of apoptosis. Expression of either U{sub L}34 or U{sub S}3 proteins alone disrupted lamin A/C and lamin B localization. Expression of U{sub L}34 and U{sub S}3 together had little effect on lamin A/C localization, suggesting a regulatory interaction between the two proteins. The data presented in this paper argue for crucial roles for both U{sub L}34 and U{sub S}3 in regulating the state of the nuclear lamina during viral infection.},
doi = {10.1016/J.VIROL.2005.1},
journal = {Virology},
number = 2,
volume = 347,
place = {United States},
year = {Mon Apr 10 00:00:00 EDT 2006},
month = {Mon Apr 10 00:00:00 EDT 2006}
}
  • The nuclear lamina is thought to be a steric barrier to the herpesvirus capsid. Disruption of the lamina accompanied by phosphorylation of lamina proteins is a conserved feature of herpesvirus infection. In HSV-1-infected cells, protein kinase C (PKC) alpha and delta isoforms are recruited to the nuclear membrane and PKC delta has been implicated in phosphorylation of emerin and lamin B. We tested two critical hypotheses about the mechanism and significance of lamina disruption. First, we show that chemical inhibition of all PKC isoforms reduced viral growth five-fold and inhibited capsid egress from the nucleus. However, specific inhibition of eithermore » conventional PKCs or PKC delta does not inhibit viral growth. Second, we show hyperphosphorylation of emerin by viral and cellular kinases is required for its disassociation from the lamina. These data support hypothesis that phosphorylation of lamina components mediates lamina disruption during HSV nuclear egress.« less
  • Previous results indicated that the herpes simplex virus 1 (HSV-1) U{sub L}31 gene is necessary and sufficient for localization of the U{sub L}34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U{sub L}31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Veromore » cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U{sub L}31 gene. The replication of the U{sub L}31 deletion virus was restored on U{sub L}31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U{sub L}34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U{sub L}34 protein localized at the nuclear membrane in rabbit skin cells, and U{sub L}31 complementing CV1 cells infected with the U{sub L}31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U{sub L}34 protein to the nuclear membrane. We speculate that this function partially complements that of U{sub L}31 and may explain why U{sub L}31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells.« less
  • Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24more » h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.« less
  • UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed inmore » non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.« less
  • Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but ismore » enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.« less