skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Epitaxial stabilization of cubic-SiN{sub x} in TiN/SiN{sub x} multilayers

Abstract

The formation of cubic-phase SiN{sub x} is demonstrated in TiN/SiN{sub x} multilayers deposited by reactive dual magnetron sputtering. Transmission electron microscopy examination shows a transition from epitaxially stabilized growth of crystalline SiN{sub x} to amorphous growth as the layer thickness increases from 0.3 to 0.8 nm. The observations are supported by ab initio calculations on different polytypes, which show that the NaCl structure has the best lattice match to TiN. Calculations also reveal a large difference in elastic shear modulus between NaCl-SiN{sub x} and TiN. The results for phase structure and shear modulus offer an explanation for the superhardening effect determined by nanoindentation experiments.

Authors:
; ; ; ;  [1];  [2];  [2];  [3]
  1. Division of Engineering Materials, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)
  2. (Sweden)
  3. (Spain)
Publication Date:
OSTI Identifier:
20779290
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 88; Journal Issue: 19; Other Information: DOI: 10.1063/1.2202145; (c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; AMORPHOUS STATE; CRYSTAL GROWTH; CUBIC LATTICES; HARDENING; LAYERS; SILICON NITRIDES; SODIUM CHLORIDES; SPUTTERING; STABILIZATION; THICKNESS; TITANIUM NITRIDES; TRANSMISSION ELECTRON MICROSCOPY; VAPOR PHASE EPITAXY

Citation Formats

Soederberg, Hans, Oden, Magnus, Larsson, Tommy, Hultman, Lars, Molina-Aldareguia, Jon M., Ombenning by 14, SE-737 90 Aengelsberg, Thin Film Physics Division, IFM, Linkoeping University, SE-581 83 Linkoeping, and CEIT and TECNUN, Paseo de Manuel Lardizabal 15, 20018 San Sebastian. Epitaxial stabilization of cubic-SiN{sub x} in TiN/SiN{sub x} multilayers. United States: N. p., 2006. Web. doi:10.1063/1.2202145.
Soederberg, Hans, Oden, Magnus, Larsson, Tommy, Hultman, Lars, Molina-Aldareguia, Jon M., Ombenning by 14, SE-737 90 Aengelsberg, Thin Film Physics Division, IFM, Linkoeping University, SE-581 83 Linkoeping, & CEIT and TECNUN, Paseo de Manuel Lardizabal 15, 20018 San Sebastian. Epitaxial stabilization of cubic-SiN{sub x} in TiN/SiN{sub x} multilayers. United States. doi:10.1063/1.2202145.
Soederberg, Hans, Oden, Magnus, Larsson, Tommy, Hultman, Lars, Molina-Aldareguia, Jon M., Ombenning by 14, SE-737 90 Aengelsberg, Thin Film Physics Division, IFM, Linkoeping University, SE-581 83 Linkoeping, and CEIT and TECNUN, Paseo de Manuel Lardizabal 15, 20018 San Sebastian. Mon . "Epitaxial stabilization of cubic-SiN{sub x} in TiN/SiN{sub x} multilayers". United States. doi:10.1063/1.2202145.
@article{osti_20779290,
title = {Epitaxial stabilization of cubic-SiN{sub x} in TiN/SiN{sub x} multilayers},
author = {Soederberg, Hans and Oden, Magnus and Larsson, Tommy and Hultman, Lars and Molina-Aldareguia, Jon M. and Ombenning by 14, SE-737 90 Aengelsberg and Thin Film Physics Division, IFM, Linkoeping University, SE-581 83 Linkoeping and CEIT and TECNUN, Paseo de Manuel Lardizabal 15, 20018 San Sebastian},
abstractNote = {The formation of cubic-phase SiN{sub x} is demonstrated in TiN/SiN{sub x} multilayers deposited by reactive dual magnetron sputtering. Transmission electron microscopy examination shows a transition from epitaxially stabilized growth of crystalline SiN{sub x} to amorphous growth as the layer thickness increases from 0.3 to 0.8 nm. The observations are supported by ab initio calculations on different polytypes, which show that the NaCl structure has the best lattice match to TiN. Calculations also reveal a large difference in elastic shear modulus between NaCl-SiN{sub x} and TiN. The results for phase structure and shear modulus offer an explanation for the superhardening effect determined by nanoindentation experiments.},
doi = {10.1063/1.2202145},
journal = {Applied Physics Letters},
number = 19,
volume = 88,
place = {United States},
year = {Mon May 08 00:00:00 EDT 2006},
month = {Mon May 08 00:00:00 EDT 2006}
}