skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows

Abstract

Based on the three-dimensional transient heat conduction equation and the elastic stress-strain equation, the temperature rise, distortion, and equivalent stress distributions of a high-reflectivity silicon reflector and a white bijou window irradiated by a high-power sloped annularly distributed laser beam are simulated using a three-dimensional finite element model (FEM). The effects of laser intensity, output duration, beam obscure ratio, and laser intensity spatial gradient on the results are especially investigated. The effects of mirror and window thermal distortion on laser beam phase aberrations are also evaluated. This noncylindrosymmetric three-dimensional FEM can be used to evaluate high-power, high-energy, laser beam-induced thermal effects on optical components.

Authors:
; ; ;
Publication Date:
OSTI Identifier:
20779114
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Optics; Journal Volume: 44; Journal Issue: 34; Other Information: DOI: 10.1364/AO.44.007442; (c) 2005 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; FINITE ELEMENT METHOD; LASERS; MIRRORS; REFLECTIVITY; SILICON; STRESSES; TEMPERATURE DEPENDENCE; THERMAL CONDUCTION; THREE-DIMENSIONAL CALCULATIONS; WINDOWS

Citation Formats

Wang Weiping, Tan Fuli, Lue Baida, and Liu Cangli. Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows. United States: N. p., 2005. Web. doi:10.1364/AO.44.0.
Wang Weiping, Tan Fuli, Lue Baida, & Liu Cangli. Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows. United States. doi:10.1364/AO.44.0.
Wang Weiping, Tan Fuli, Lue Baida, and Liu Cangli. Thu . "Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows". United States. doi:10.1364/AO.44.0.
@article{osti_20779114,
title = {Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows},
author = {Wang Weiping and Tan Fuli and Lue Baida and Liu Cangli},
abstractNote = {Based on the three-dimensional transient heat conduction equation and the elastic stress-strain equation, the temperature rise, distortion, and equivalent stress distributions of a high-reflectivity silicon reflector and a white bijou window irradiated by a high-power sloped annularly distributed laser beam are simulated using a three-dimensional finite element model (FEM). The effects of laser intensity, output duration, beam obscure ratio, and laser intensity spatial gradient on the results are especially investigated. The effects of mirror and window thermal distortion on laser beam phase aberrations are also evaluated. This noncylindrosymmetric three-dimensional FEM can be used to evaluate high-power, high-energy, laser beam-induced thermal effects on optical components.},
doi = {10.1364/AO.44.0},
journal = {Applied Optics},
number = 34,
volume = 44,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2005},
month = {Thu Dec 01 00:00:00 EST 2005}
}
  • ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue)more » is achieved, respectively.« less
  • The sectional high-frequency internally-cooled window, as proposed by General Atomics(1), has unique potential for allowing microwave sources to reach multi-megawatt CW levels with application to ECRH. Designs are being investigated using computational electromagnetic (EM), thermal, and mechanical codes at 110 GHz and 170 GHz to examine the design tradeoffs between RF performance and thermal mechanical safety margins. The EM analyses are for the window, under vacuum at one MW and includes variations in the shapes of the cooling fins, the surface treatment of the window elements themselves, the cooling fin tip treatment, the window pitch angle, and the waveguide effects.more » One advantage of the distributed cooled window is it{close_quote}s extensibility to higher power levels. Results in the modeling efforts are presented showing the EM field concentrations (which then will feed into the thermal analysis), the energy scattering/reflection, the transmitted launch angle variation as a function of physical geometry, and the spatial energy distribution and loss as a function of time and position. {copyright} {ital 1996 American Institute of Physics.}« less
  • A reactive electron beam evaporation process was used to fabricate 1.064 {mu}mHfO{sub 2}/SiO{sub 2} high reflectors. The deposition process was optimized to reduce the nodular density. Cross-sectioning of nodular defects by a focused ion-beam milling instrument showed that the nodule seeds were the residual particles on the substrate and the particulates from the silica source ''splitting.'' After optimizing the substrate preparation procedure and the evaporation process, a low nodular density of 2.7/mm{sup 2} was achieved. The laser damage test revealed that the ejection fluences and damage growth behaviors of nodules created from deep or shallow seeds were totally different. Amore » mechanism based on directional plasma scald was proposed to interpret observed damage growth phenomenon.« less
  • This paper describes a comprehensive study on the feasibility of advanced reactor core analyses within the framework of pin-by-pin multigroup transport calculations using a prototype of the object-oriented parallel core calculation code SCOPE. The SCOPE code enables the coupling of the diffusion theory method and the SP{sub N} transport theory method. The formulation of the method coupling and its verifications with benchmarks are presented.Quantitative estimation of the pin-cell homogenization effects within the octant core geometry of a three-loop-type pressurized water reactor (PWR) was performed. Comparisons between results by heterogeneous and homogeneous calculations revealed the effects on pin-cell homogenization in large-scalemore » geometry. In order to preserve the neutronic property in the heterogeneous calculation within the framework of pin-cell homogenized pin-by-pin calculations, the applicability of the homogenized cross section corrected by the superhomogeneisation SPH method was studied. It was found that the pin-by-pin nine-group calculation by the SP3 transport theory method with the SPH-corrected cross sections gave good accuracy for the pin power distribution approximately <1% of the root-mean-square error. The calculation accuracy of the transport calculation and the effectiveness of the method coupling were also demonstrated through analyses of the initial core of an identical three-loop-type PWR.With fine-grained parallelism, the identical convergence property was obtained regardless of the number of processors. Parallel performance was almost scalable up to eight processors, 93% with eight processors in three-dimensional nine-group fine-mesh transport calculations with meshes of 180 x 180 x 30.« less
  • In laser shock peening (LSP) under a water-confinement regime, laser-matter interaction near the coating-water interface can induce very high pressures in the order of gigapascals, which can impart compressive residual stresses into metal workpieces to improve fatigue and corrosion properties. For axisymmetric laser spots with finite size, the pressure generation near the water-coating interface is a two dimensional process in nature. This is in particular the case for microscale LSP performed with very small laser spots, which is a very promising technique to improve the reliability performance of microdevices. However, models capable of predicting two dimensional (2D) spatial distributions ofmore » the induced pressures near the coating-water interface in LSP have rarely been reported in literature. In this paper, a predictive 2D axisymmetric model is developed by numerically solving the hydrodynamic equations, supplemented with appropriate equations of state of water and the coating material. The model can produce 2D spatial distributions of material responses near the water-coating interface in LSP, and is verified through comparisons with experimental measurements. The model calculation shows that the effect of radial release wave on pressure spatial distributions becomes more significant as the laser spot size decreases, indicating the importance of a 2D model, particularly for microscale LSP.« less