skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering

Abstract

Nonlinear Thomson backscattering of an intense circularly polarized laser by a counterpropagating energetic electron is investigated. The results show that in the scattering of a non-tightly-focused laser pulse with an intensity around 10{sup 19} W/cm{sup 2} and a pulse duration of 100 fs full width at half maximum by a counterpropagating electron with an initial energy of 10 MeV, a crescent-shaped pulse with a pulse duration of 469 as and the photon energy ranging from 230 eV to 2.5 keV is generated in the backward direction. It is shown that the radiated pulse shape and monochromaticity can be modified by changing the laser beam waist, while in the case of a tightly focused laser field, a single peak pulse with a shorter duration and better monochromaticity can be obtained. With increase of the electron initial energy, the peak power of the radiated pulse increases and the pulse duration decreases. An isolated powerful zeptosecond (10{sup -21} s) pulse with a peak power of about 10{sup 10} W/rad{sup 2} and photon energy up to several MeV can be obtained with a 250 MeV electron.

Authors:
; ; ;  [1]
  1. State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)
Publication Date:
OSTI Identifier:
20778471
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics; Journal Volume: 72; Journal Issue: 6; Other Information: DOI: 10.1103/PhysRevE.72.066501; (c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BACKSCATTERING; EV RANGE 100-1000; KEV RANGE 01-10; LASER RADIATION; LASERS; MEV RANGE 10-100; MEV RANGE 100-1000; NONLINEAR PROBLEMS; PEAK LOAD; PHOTONS; PULSE SHAPERS; PULSES; TAIL ELECTRONS; THOMSON SCATTERING; X RADIATION; X-RAY SOURCES

Citation Formats

Lan Pengfei, Lu Peixiang, Cao Wei, and Wang Xinlin. Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering. United States: N. p., 2005. Web. doi:10.1103/PHYSREVE.72.0.
Lan Pengfei, Lu Peixiang, Cao Wei, & Wang Xinlin. Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering. United States. doi:10.1103/PHYSREVE.72.0.
Lan Pengfei, Lu Peixiang, Cao Wei, and Wang Xinlin. Thu . "Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering". United States. doi:10.1103/PHYSREVE.72.0.
@article{osti_20778471,
title = {Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering},
author = {Lan Pengfei and Lu Peixiang and Cao Wei and Wang Xinlin},
abstractNote = {Nonlinear Thomson backscattering of an intense circularly polarized laser by a counterpropagating energetic electron is investigated. The results show that in the scattering of a non-tightly-focused laser pulse with an intensity around 10{sup 19} W/cm{sup 2} and a pulse duration of 100 fs full width at half maximum by a counterpropagating electron with an initial energy of 10 MeV, a crescent-shaped pulse with a pulse duration of 469 as and the photon energy ranging from 230 eV to 2.5 keV is generated in the backward direction. It is shown that the radiated pulse shape and monochromaticity can be modified by changing the laser beam waist, while in the case of a tightly focused laser field, a single peak pulse with a shorter duration and better monochromaticity can be obtained. With increase of the electron initial energy, the peak power of the radiated pulse increases and the pulse duration decreases. An isolated powerful zeptosecond (10{sup -21} s) pulse with a peak power of about 10{sup 10} W/rad{sup 2} and photon energy up to several MeV can be obtained with a 250 MeV electron.},
doi = {10.1103/PHYSREVE.72.0},
journal = {Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics},
number = 6,
volume = 72,
place = {United States},
year = {Thu Dec 15 00:00:00 EST 2005},
month = {Thu Dec 15 00:00:00 EST 2005}
}
  • Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as amore » subfemtosecond x-ray pump and probe with adjustable time delay and power ratio.« less
  • Backward Raman amplification (BRA) in plasmas holds the potential for longitudinal compression and focusing of powerful x-ray pulses. In principle, this method is capable of producing pulse intensities close to the vacuum breakdown threshold by manipulating the output of planned x-ray sources. The minimum wavelength limit of BRA applicability to compression of laser pulses in plasmas is found.
  • The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecondmore » physics.”.« less
  • Attosecond x-ray pulses are an indispensable tool for the study of electronic and structural changes in molecules undergoing chemical reactions. They have a wide bandwidth comparable to the energy bands of valence electronic states and, therefore, are well suited for making and probing multiple valence electronic excitations using core electron transitions. Here we propose a method of creating a sequence of two attosecond soft x-ray pulses in a free electron laser by optical manipulation of electrons located in two different sections of the electron bunch. The energy of each x-ray pulse can be of the order of 100 nJ andmore » the pulse width of the order of 250 attoseconds. The carrier frequency of each x-ray pulse can be independently tuned to a resonant core electron transition of a specific atom of the molecule. The time interval between the two attosecond pulses is tunable from a few femtoseconds to a hundred femtoseconds with better than 100 attoseconds precision.« less
  • We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses.