skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multitude of Core-Localized Shear Alfven Waves in a High-Temperature Fusion Plasma

Abstract

Evidence is presented for a multitude of discrete frequency Alfven waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfven velocity.

Authors:
; ; ; ;  [1];  [2]; ; ;  [3]; ; ; ;  [4]; ;  [5]; ; ;  [6];  [7]
  1. Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)
  2. University of Texas at Austin, Austin, Texas 78712 (United States)
  3. General Atomics, San Diego, California 92186-5608 (United States)
  4. University of California at Los Angeles, Los Angeles, California 90095 (United States)
  5. University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
  6. Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
  7. Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831 (United States)
Publication Date:
OSTI Identifier:
20777091
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review Letters; Journal Volume: 96; Journal Issue: 10; Other Information: DOI: 10.1103/PhysRevLett.96.105006; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ALFVEN WAVES; EXCITATION; LARMOR RADIUS; PLASMA; PLASMA CONFINEMENT; PLASMA DIAGNOSTICS; PLASMA DRIFT; PLASMA WAVES; TOKAMAK DEVICES; TURBULENCE; WAVELENGTHS

Citation Formats

Nazikian, R., Budny, R.V., Gorelenkov, N.N., Kramer, G.J., Solomon, W.M., Berk, H.L., Burrell, K.H., La Haye, R.J., Strait, E.J., Doyle, E.J., Peebles, W.A., Rhodes, T.L., Zeng, L., Fonck, R.J., McKee, G.R., Holcomb, C., Jayakumar, R.J., Makowski, M.A., and VanZeeland, M.A.. Multitude of Core-Localized Shear Alfven Waves in a High-Temperature Fusion Plasma. United States: N. p., 2006. Web. doi:10.1103/PhysRevLett.96.105006.
Nazikian, R., Budny, R.V., Gorelenkov, N.N., Kramer, G.J., Solomon, W.M., Berk, H.L., Burrell, K.H., La Haye, R.J., Strait, E.J., Doyle, E.J., Peebles, W.A., Rhodes, T.L., Zeng, L., Fonck, R.J., McKee, G.R., Holcomb, C., Jayakumar, R.J., Makowski, M.A., & VanZeeland, M.A.. Multitude of Core-Localized Shear Alfven Waves in a High-Temperature Fusion Plasma. United States. doi:10.1103/PhysRevLett.96.105006.
Nazikian, R., Budny, R.V., Gorelenkov, N.N., Kramer, G.J., Solomon, W.M., Berk, H.L., Burrell, K.H., La Haye, R.J., Strait, E.J., Doyle, E.J., Peebles, W.A., Rhodes, T.L., Zeng, L., Fonck, R.J., McKee, G.R., Holcomb, C., Jayakumar, R.J., Makowski, M.A., and VanZeeland, M.A.. Fri . "Multitude of Core-Localized Shear Alfven Waves in a High-Temperature Fusion Plasma". United States. doi:10.1103/PhysRevLett.96.105006.
@article{osti_20777091,
title = {Multitude of Core-Localized Shear Alfven Waves in a High-Temperature Fusion Plasma},
author = {Nazikian, R. and Budny, R.V. and Gorelenkov, N.N. and Kramer, G.J. and Solomon, W.M. and Berk, H.L. and Burrell, K.H. and La Haye, R.J. and Strait, E.J. and Doyle, E.J. and Peebles, W.A. and Rhodes, T.L. and Zeng, L. and Fonck, R.J. and McKee, G.R. and Holcomb, C. and Jayakumar, R.J. and Makowski, M.A. and VanZeeland, M.A.},
abstractNote = {Evidence is presented for a multitude of discrete frequency Alfven waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfven velocity.},
doi = {10.1103/PhysRevLett.96.105006},
journal = {Physical Review Letters},
number = 10,
volume = 96,
place = {United States},
year = {Fri Mar 17 00:00:00 EST 2006},
month = {Fri Mar 17 00:00:00 EST 2006}
}