skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

Abstract

Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response.

Authors:
 [1];  [2];  [2];  [2];  [2]
  1. Institute for Research in Biomedicine, Via Vela 6, Bellinzona CH6500 (Switzerland). E-mail: serafino.pantano@unil.ch
  2. Institute for Research in Biomedicine, Via Vela 6, Bellinzona CH6500 (Switzerland)
Publication Date:
OSTI Identifier:
20775367
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 312; Journal Issue: 8; Other Information: DOI: 10.1016/j.yexcr.2005.12.020; PII: S0014-4827(05)00615-4; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANTIGENS; GENES; INFLAMMATION; LYMPHOCYTES; LYMPHOKINES; ORGANS; PATHOGENS; TRANSCRIPTION

Citation Formats

Pantano, Serafino, Jarrossay, David, Saccani, Simona, Bosisio, Daniela, and Natoli, Gioacchino. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells. United States: N. p., 2006. Web. doi:10.1016/j.yexcr.2005.12.020.
Pantano, Serafino, Jarrossay, David, Saccani, Simona, Bosisio, Daniela, & Natoli, Gioacchino. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells. United States. doi:10.1016/j.yexcr.2005.12.020.
Pantano, Serafino, Jarrossay, David, Saccani, Simona, Bosisio, Daniela, and Natoli, Gioacchino. Mon . "Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells". United States. doi:10.1016/j.yexcr.2005.12.020.
@article{osti_20775367,
title = {Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells},
author = {Pantano, Serafino and Jarrossay, David and Saccani, Simona and Bosisio, Daniela and Natoli, Gioacchino},
abstractNote = {Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response.},
doi = {10.1016/j.yexcr.2005.12.020},
journal = {Experimental Cell Research},
number = 8,
volume = 312,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2006},
month = {Mon May 01 00:00:00 EDT 2006}
}
  • Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown butmore » our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.« less
  • We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)–p53–p21{sup Cip1/WAF1} pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted inmore » nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. - Highlights: • FoxO3a overexpression inhibited ROS production mediated by CK2α knockdown. • CK2α downregulation induced nuclear export of FoxO3a via AKT activation. • CK2α downregulation reduced transcription of FoxO3a target genes including SOD. • CK2α upregulation elevated nuclear import and target gene expression of FoxO3a. • This study indicates that CK2 can modulate the intracellular ROS level via FoxO3a.« less
  • During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by (gamma-32P)ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiographymore » showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from (3H)ouabain bound to the cell surface before maturation could be phosphorylated with inorganic (32P)phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane.« less
  • Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found tomore » cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.« less
  • Myeloperoxidase is a major protein component of the azurophilic granules (specialized lysosomes) of normal human neutrophils and serves as part of a potent bactericidal system in the host defense function of these cells. In normal, mature cells, myeloperoxidase occurs exclusively as a dimer of M{sub r} 150,000 while in immature leukemia cells, there are both monomeric (M{sub r} 80,000) as well as dimeric species. To study the assembly of dimeric myeloperoxidase, azurophilic granules were isolated from either unlabeled or pulse-labeled (({sup 35}S)methionine/cysteine) HL-60 cells, and myeloperoxidase was extracted and separated into monomeric and dimeric forms by FPLC gel filtration chromatography.more » Steady-state levels of dimeric and monomeric myeloperoxidase were found to account for 67% and 33%, respectively, of the total peroxidase activity and were correlated with the levels of associated heme as measured by absorption at 430 nm. Labeled myeloperoxidase polypeptides were immunoprecipitated using a monospecific rabbit antibody and were identified and quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/fluorography and liquid scintillation counting. Quantitation of the time course of the conversion of monomeric to dimeric myeloperoxidase indicated a precursor-product relationship at the level of the mature M{sub r} 60,000 subunit. The assembly of dimeric enzyme is a relatively late event in maturation with a t{sub 1/2} of 36 h, implying that this process occurs in more mature, dense azurophilic granules.« less