skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scatter rejection in multislit digital mammography

Abstract

The scatter to primary ratio (SPR) was measured on a scanning multislit full-field digital mammography system for different thickness of breast equivalent material and different tube voltages. Scatter within the detector was measured separately and was found to be the major source of scatter in the assembly. Measured total SPRs below 6% are reported for breast range 3-7 cm. The performance of the multislit assembly is compared to other imaging geometries with different scatter rejection schemes by using the scatter detective quantum efficiency.

Authors:
; ; ;  [1];  [2];  [2]
  1. Department of Physics, Royal Institute of Technology, AlbaNova, 106 91, Stockholm (Sweden)
  2. (Sweden)
Publication Date:
OSTI Identifier:
20775131
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 33; Journal Issue: 4; Other Information: DOI: 10.1118/1.2179122; (c) 2006 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; ELECTRIC POTENTIAL; EQUIPMENT; GEOMETRY; IMAGE PROCESSING; MAMMARY GLANDS; PERFORMANCE; QUANTUM EFFICIENCY; THICKNESS

Citation Formats

Aaslund, Magnus, Cederstroem, Bjoern, Lundqvist, Mats, Danielsson, Mats, Sectra Mamea AB, Kistagaangen 2, 164 40 Kista, and Department of Physics, Royal Institute of Technology, AlbaNova, 106 91, Stockholm. Scatter rejection in multislit digital mammography. United States: N. p., 2006. Web. doi:10.1118/1.2179122.
Aaslund, Magnus, Cederstroem, Bjoern, Lundqvist, Mats, Danielsson, Mats, Sectra Mamea AB, Kistagaangen 2, 164 40 Kista, & Department of Physics, Royal Institute of Technology, AlbaNova, 106 91, Stockholm. Scatter rejection in multislit digital mammography. United States. doi:10.1118/1.2179122.
Aaslund, Magnus, Cederstroem, Bjoern, Lundqvist, Mats, Danielsson, Mats, Sectra Mamea AB, Kistagaangen 2, 164 40 Kista, and Department of Physics, Royal Institute of Technology, AlbaNova, 106 91, Stockholm. Sat . "Scatter rejection in multislit digital mammography". United States. doi:10.1118/1.2179122.
@article{osti_20775131,
title = {Scatter rejection in multislit digital mammography},
author = {Aaslund, Magnus and Cederstroem, Bjoern and Lundqvist, Mats and Danielsson, Mats and Sectra Mamea AB, Kistagaangen 2, 164 40 Kista and Department of Physics, Royal Institute of Technology, AlbaNova, 106 91, Stockholm},
abstractNote = {The scatter to primary ratio (SPR) was measured on a scanning multislit full-field digital mammography system for different thickness of breast equivalent material and different tube voltages. Scatter within the detector was measured separately and was found to be the major source of scatter in the assembly. Measured total SPRs below 6% are reported for breast range 3-7 cm. The performance of the multislit assembly is compared to other imaging geometries with different scatter rejection schemes by using the scatter detective quantum efficiency.},
doi = {10.1118/1.2179122},
journal = {Medical Physics},
number = 4,
volume = 33,
place = {United States},
year = {Sat Apr 15 00:00:00 EDT 2006},
month = {Sat Apr 15 00:00:00 EDT 2006}
}
  • Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-raymore » exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full-field imaging by 259%, 279%, and 145% for SEDR, slot-scan, and full-field with grid, respectively. The average CNR over four regions was found to improve over that for nongrid full-field imaging by 201% for SEDR as compared to 133% for the slot-scan technique and 14% for the antiscatter grid method. Conclusions: Both SEDR and slot-scan techniques outperformed the antiscatter grid method used in standard full-field radiography. For imaging with the same effective exposure, the SEDR technique offers no advantage over the slot-scan method in terms of SPRs and CRs. However, it improves CNRs significantly, especially in heavily attenuating regions. The improvement of low-contrast performance may help improve the detection of the lung nodules or other abnormalities and may offer SEDR the potential for dose reduction in chest radiography.« less
  • Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DEmore » calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 {mu}m) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 {mu}m size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 {mu}m size range when the visibility criteria were lowered to barely visible. Calcifications smaller than {approx}250 {mu}m were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise.« less
  • The use of a grid increases perceptibility of low contrast objects in mammography. Slot-scan mammography provides a more dose efficient reduction of the scattered radiation reaching the detector than obtained with an antiscatter grid in screen-film or flat-panel digital mammography. In this paper, the potential of using a grid in a slot-scan system to provide a further reduction of scattered radiation is investigated. The components of the digital signal: primary radiation, off-focus radiation, scattered radiation, and optical fluorescence glare in a CsI(Tl) detector were quantified. Based on these measurements, the primary and scatter transmission factors (T{sub p},T{sub s}), scatter-to-primary ratiomore » (SPR), signal-difference-to-noise ratio (SDNR), and the SDNR improvement factor (K{sub SDNR}) were obtained. Our results showed that the SPR ranged from 0.05 to 0.19 for breast thicknesses between 2 and 8 cm, respectively. The values of K{sub SDNR} ranged from 0.85 to 0.94. Because the slot-scanning system has an inherently low SPR, the increase in dose required when the grid is used outweighs the benefit of the small increase in SDNR. It is possible that greater benefit could be achieved by using a grid with a higher T{sub p}, such as obtained using air-core technology.« less
  • Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In thismore » paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of background DE calcification signals using scatter-uncorrected data was reduced by 58% with scatter-corrected data by algorithmic method. With the scatter-correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μm.Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole-array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5-cm-thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness.« less
  • Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible withmore » a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0.16, and the MRE ranged from about 3 to 13 mm. Without a grid, the SF ranged from a minimum of 0.25 to a maximum of 0.52, and the MRE ranged from about 20 to 45 mm. The SF with a grid demonstrated a mild dependence on target/filter combination and kV, whereas the SF without a grid was independent of these factors. The MRE demonstrated a complex relationship as a function of kV, with notable difference among target/filter combinations. The primary source of change in both the SF and MRE was phantom thickness. Conclusions: Because breast tissue varies spatially in physical density and elemental content, the effective thickness of breast tissue varies spatially across the imaging field, resulting in a spatially-variant scatter distribution in the imaging field. The data generated in this study can be used to characterize the scatter contribution on a point-by-point basis, for a variety of different techniques.« less