skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system

Abstract

The use of a grid increases perceptibility of low contrast objects in mammography. Slot-scan mammography provides a more dose efficient reduction of the scattered radiation reaching the detector than obtained with an antiscatter grid in screen-film or flat-panel digital mammography. In this paper, the potential of using a grid in a slot-scan system to provide a further reduction of scattered radiation is investigated. The components of the digital signal: primary radiation, off-focus radiation, scattered radiation, and optical fluorescence glare in a CsI(Tl) detector were quantified. Based on these measurements, the primary and scatter transmission factors (T{sub p},T{sub s}), scatter-to-primary ratio (SPR), signal-difference-to-noise ratio (SDNR), and the SDNR improvement factor (K{sub SDNR}) were obtained. Our results showed that the SPR ranged from 0.05 to 0.19 for breast thicknesses between 2 and 8 cm, respectively. The values of K{sub SDNR} ranged from 0.85 to 0.94. Because the slot-scanning system has an inherently low SPR, the increase in dose required when the grid is used outweighs the benefit of the small increase in SDNR. It is possible that greater benefit could be achieved by using a grid with a higher T{sub p}, such as obtained using air-core technology.

Authors:
; ; ; ;  [1];  [2]
  1. Imaging Research, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Ave, Room SG12, Toronto, Ontario, M4N 3M5 (Canada)
  2. (Canada)
Publication Date:
OSTI Identifier:
20775111
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 33; Journal Issue: 4; Other Information: DOI: 10.1118/1.2184445; (c) 2006 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; FLUORESCENCE; IMAGE SCANNERS; MAMMARY GLANDS; PERFORMANCE; RADIATION DOSES; X-RAY DIFFRACTION

Citation Formats

Shen, Sam Z., Bloomquist, Aili K., Mawdsley, Gord E., Yaffe, Martin J., Elbakri, Idris, and Division of Medical Physics, CancerCare Manitoba, 675 McDermot Ave Winnipeg, Manitoba, R3E 0V9. Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system. United States: N. p., 2006. Web. doi:10.1118/1.2184445.
Shen, Sam Z., Bloomquist, Aili K., Mawdsley, Gord E., Yaffe, Martin J., Elbakri, Idris, & Division of Medical Physics, CancerCare Manitoba, 675 McDermot Ave Winnipeg, Manitoba, R3E 0V9. Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system. United States. doi:10.1118/1.2184445.
Shen, Sam Z., Bloomquist, Aili K., Mawdsley, Gord E., Yaffe, Martin J., Elbakri, Idris, and Division of Medical Physics, CancerCare Manitoba, 675 McDermot Ave Winnipeg, Manitoba, R3E 0V9. Sat . "Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system". United States. doi:10.1118/1.2184445.
@article{osti_20775111,
title = {Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system},
author = {Shen, Sam Z. and Bloomquist, Aili K. and Mawdsley, Gord E. and Yaffe, Martin J. and Elbakri, Idris and Division of Medical Physics, CancerCare Manitoba, 675 McDermot Ave Winnipeg, Manitoba, R3E 0V9},
abstractNote = {The use of a grid increases perceptibility of low contrast objects in mammography. Slot-scan mammography provides a more dose efficient reduction of the scattered radiation reaching the detector than obtained with an antiscatter grid in screen-film or flat-panel digital mammography. In this paper, the potential of using a grid in a slot-scan system to provide a further reduction of scattered radiation is investigated. The components of the digital signal: primary radiation, off-focus radiation, scattered radiation, and optical fluorescence glare in a CsI(Tl) detector were quantified. Based on these measurements, the primary and scatter transmission factors (T{sub p},T{sub s}), scatter-to-primary ratio (SPR), signal-difference-to-noise ratio (SDNR), and the SDNR improvement factor (K{sub SDNR}) were obtained. Our results showed that the SPR ranged from 0.05 to 0.19 for breast thicknesses between 2 and 8 cm, respectively. The values of K{sub SDNR} ranged from 0.85 to 0.94. Because the slot-scanning system has an inherently low SPR, the increase in dose required when the grid is used outweighs the benefit of the small increase in SDNR. It is possible that greater benefit could be achieved by using a grid with a higher T{sub p}, such as obtained using air-core technology.},
doi = {10.1118/1.2184445},
journal = {Medical Physics},
number = 4,
volume = 33,
place = {United States},
year = {Sat Apr 15 00:00:00 EDT 2006},
month = {Sat Apr 15 00:00:00 EDT 2006}
}
  • The purpose of this study was to evaluate and compare microcalcification detectability of two commercial full-field digital mammography (DM) systems. The first unit was a flat panel based DM system (FFDM) which employed an anti-scatter grid method to reject scatter, and the second unit was a charge-coupled device-based DM system (SSDM) which used scanning slot imaging geometry to reduce scatter radiation. Both systems have comparable scatter-to-primary ratios. In this study, 125-160 and 200-250 {mu}m calcium carbonate grains were used to simulate microcalcifications and imaged by both DM systems. The calcium carbonate grains were overlapped with a 5-cm-thick 50% adipose/50% glandularmore » simulated breast tissue slab and an anthropomorphic breast phantom (RMI 165, Gammex) for imaging at two different mean glandular dose levels: 0.87 and 1.74 mGy. A reading study was conducted with seven board certified mammographers with images displayed on review workstations. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (A{sub z}) was used to quantify and compare the performances of these two systems. The results showed that with the simulated breast tissue slab (uniform background), the SSDM system resulted in higher A{sub z}'s than the FFDM system at both MGD levels with the difference statistically significant at 0.87 mGy only. With the anthropomorphic breast phantom (tissue structure background), the SSDM system performed better than the FFDM system at 0.87 mGy but worse at 1.74 mGy. However, the differences were not found to be statistically significant.« less
  • Automatic exposure control (AEC) is an important feature in mammography. It enables consistently optimal image exposure despite variations in tissue density and thickness, and user skill level. Full field digital mammography systems cannot employ conventional AEC methods because digital receptors fully absorb the x-ray beam. In this paper we describe an AEC procedure for slot scanning mammography. With slot scanning detectors, our approach uses a fast low-resolution and low-exposure prescan to acquire an image of the breast. Tube potential depends on breast thickness, and the prescan histogram provides the necessary information to calculate the required tube current. We validate ourmore » approach with simulated prescan images and phantom measurements. We achieve accurate exposure tracking with thickness and density, and expect this method of AEC to reduce retakes and improve workflow.« less
  • Anti-scatter grids have been widely used to reject scatter and increase the perceptibility of low-contrast object in chest radiography; however they also attenuate the primary x-rays, resulting in a substantial degradation of primary information. Compensation for this degradation requires the use of higher exposure technique hence higher dose to the patient. A more efficient approach to reject scatter is the slot-scan imaging technique which employs a narrow scanning x-ray fan beam in conjunction with a slit or slot shaped solid state detector or an area detector used with an aft-collimator. With this approach, scatter can be rejected effectively without themore » need to attenuate primary x-rays. This paper demonstrates an electronic aft-collimation method, referred to as the alternate line erasure and readout (ALER) technique, for implementing the slot-scan digital radiography with a modern flat-panel detector. With this technique, instead of first exposing the detector and then reading the image line by line, the image line on the leading edge of the scanning fan beam is reset to erase the scatter accumulated prior to the arrival of the fan beam x-rays, while the image line on the trailing edge of the scanning fan beam is read out to acquire the image signals following the fan-beam exposure. These reset and readout processes are alternated and repeated as the x-ray fan beam scans across the detector. An anthropomorphic chest phantom was imaged to evaluate the scatter rejection ability and the low-contrast performance for the ALER technique and compare them with those for the anti-scatter grid method in full-field chest imaging. With a projected beam width of 16 mm, the slot-scan/ALER technique resulted in an average reduction of the scatter-to-primary ratios by 81%, 84%, 82%, and 86% versus 65%, 73%, 74%, and 73% with the anti-scatter grid method in the lungs, mediastinum, retrocardium, and subdiaphragm, respectively. The average CNR for the slot-scan/ALER technique was found to improve by 135%, 133%, 176%, and 87% versus 15%, 15%, 38%, and -11% with the anti-scatter grid method in the mediastinum, retrocardium, subdiaphragm, and lungs, respectively. These results demonstrated that the slot-scan/ALER technique can be used to achieve equally effective scatter rejection but substantially higher low-contrast performance than the anti-scatter grid method.« less
  • Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-raymore » exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full-field imaging by 259%, 279%, and 145% for SEDR, slot-scan, and full-field with grid, respectively. The average CNR over four regions was found to improve over that for nongrid full-field imaging by 201% for SEDR as compared to 133% for the slot-scan technique and 14% for the antiscatter grid method. Conclusions: Both SEDR and slot-scan techniques outperformed the antiscatter grid method used in standard full-field radiography. For imaging with the same effective exposure, the SEDR technique offers no advantage over the slot-scan method in terms of SPRs and CRs. However, it improves CNRs significantly, especially in heavily attenuating regions. The improvement of low-contrast performance may help improve the detection of the lung nodules or other abnormalities and may offer SEDR the potential for dose reduction in chest radiography.« less
  • Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less