skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

Abstract

Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference methodmore » (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is feasible. This can lower the dose needed for 4-D CT acquisitions or can help to correct 4-D acquisition artifacts. The 4-D CT model can be used to propagate contours, to compute a 4-D dose map, or to simulate CT acquisitions with an irregular breathing signal. It could serve as a basis for 4-D radiation therapy planning. Further work is needed to make the simulation more realistic by taking into account hysteresis and more complex voxel trajectories.« less

Authors:
; ; ;  [1];  [2];  [3];  [3]
  1. Centre Leon Berard, Department of Radiotherapy, Lyon, France, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon (France) and CREATIS Laboratory, INSA - Batiment Blaise Pascal, 7, avenue Jean Capelle, 69621 Villeurbanne cedex, (France)
  2. (France) and Centre Leon Berard, Department of Radiotherapy, Lyon (France)
  3. (France)
Publication Date:
OSTI Identifier:
20775085
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 33; Journal Issue: 3; Other Information: DOI: 10.1118/1.2161409; (c) 2006 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; BREATH; CHEST; COMPUTERIZED TOMOGRAPHY; HYSTERESIS; IMAGES; LUNGS; MINIMIZATION; MODIFICATIONS; NEOPLASMS; RADIOTHERAPY; RESPIRATION; SIMULATION; VECTOR FIELDS

Citation Formats

Sarrut, David, Boldea, Vlad, Miguet, Serge, Ginestet, Chantal, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon, and Centre Leon Berard, Department of Radiotherapy, Lyon. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. United States: N. p., 2006. Web. doi:10.1118/1.2161409.
Sarrut, David, Boldea, Vlad, Miguet, Serge, Ginestet, Chantal, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon, & Centre Leon Berard, Department of Radiotherapy, Lyon. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. United States. doi:10.1118/1.2161409.
Sarrut, David, Boldea, Vlad, Miguet, Serge, Ginestet, Chantal, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon, LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon, and Centre Leon Berard, Department of Radiotherapy, Lyon. Wed . "Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans". United States. doi:10.1118/1.2161409.
@article{osti_20775085,
title = {Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans},
author = {Sarrut, David and Boldea, Vlad and Miguet, Serge and Ginestet, Chantal and LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon and LIRIS Laboratory, Universite Lumiere Lyon 2, Lyon and Centre Leon Berard, Department of Radiotherapy, Lyon},
abstractNote = {Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is feasible. This can lower the dose needed for 4-D CT acquisitions or can help to correct 4-D acquisition artifacts. The 4-D CT model can be used to propagate contours, to compute a 4-D dose map, or to simulate CT acquisitions with an irregular breathing signal. It could serve as a basis for 4-D radiation therapy planning. Further work is needed to make the simulation more realistic by taking into account hysteresis and more complex voxel trajectories.},
doi = {10.1118/1.2161409},
journal = {Medical Physics},
number = 3,
volume = 33,
place = {United States},
year = {Wed Mar 15 00:00:00 EST 2006},
month = {Wed Mar 15 00:00:00 EST 2006}
}
  • There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomicalmore » computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5 Gy (0.7 to 9.6 Gy) at FB, 1.2 Gy (0.6 to 3.8 Gy, p < 0.001) at 75% inspiration, 1.1 Gy (0.6 to 3.1 Gy, p = 0.004) at 90% inspiration, 1.0 Gy (0.6 to 3.0 Gy) at 100% inspiration or DIBH, and 1.0 Gy (0.6 to 2.8 Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9 Gy (2.4 to 46.4 Gy), 8.6 Gy (2.0 to 43.8 Gy, p < 0.001), 7.2 Gy (1.9 to 40.1 Gy, p = 0.035), 6.5 Gy (1.8 to 34.7 Gy), and 5.3 Gy (1.5 to 31.5 Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan.« less
  • Purpose: Elasticity may distinguish malignant from benign pulmonary nodules. To compare determining of malignant pulmonary nodule (MPN) elasticity from four dimensional computed tomography (4D CT) images versus inhale/exhale breath-hold CT images. Methods: We analyzed phase 00 and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy (SABR). The radius of the smallest MPN was 0.3 cm while the biggest one was 2.1 cm. An intensity based deformable image registration (DIR) workflow was applied to the 4D CT and breath-hold images to determine the volumes of the MPNsmore » and a 1 cm ring of surrounding lung tissue (ring) in each state. Next, an elasticity parameter was derived by calculating the ratio of the volume changes of MPN (exhale:inhale or phase50:phase00) to that of a 1 cm ring of lung tissue surrounding the MPN. The proposed formulation of elasticity enables us to compare volume changes of two different MPN in two different locations of lung. Results: The calculated volume ratio of MPNs from 4D CT (phase50:phase00) and breath-hold images (exhale:inhale) was 1.00±0.23 and 0.95±0.11, respectively. It shows the stiffness of MPN and comparably bigger volume changes of MPN in breath-hold images because of the deeper degree of inhalation. The calculated elasticity of MPNs from 4D CT and breath-hold images was 1.12±0.22 and 1.23±0.26, respectively. For five patients who have had two MPN in their lung, calculated elasticity of tumor A and tumor B follows same trend in both 4D CT and breath-hold images. Conclusion: We showed that 4D CT and breath-hold images are comparable in the ability to calculate the elasticity of MPN. This study has been supported by Department of Defense LCRP 2011 #W81XWH-12-1-0286.« less
  • Purpose: To evaluate correlation between the reproducibility of tumor position under feedback guided voluntary deep inspiration breath hold gating at simulation and at treatment. Methods: All patients treated with breath hold (BH) have 3-6 BH CTs taken at simulation (sim). In addition, if the relationship between the tumor and nearby bony anatomy on treatment BH CT(or CBCT) is found to be greater than 5 mm different at treatment than it was at sim, a repeat BH CT is taken before treatment. We retrospectively analyzed the sim CTs for 19 patients who received BH SBRT lung treatments and had repeat BHmore » CT on treatment. We evaluated the reproducibility of the tumor position during the simulation CTs and compared this to the reproducibility of the tumor position on the repeat treatment CT with our in-house CT alignment software (CT-Assisted Targeting for Radiotherapy). Results: Comparing the tumor position for multiple simulation BH CTs, we calculated: maximum difference (max) = 0.69cm; average difference (x) = 0.28cm; standard deviation (σ) = 0.18cm. Comparing the repeat BH CBCTs on treatment days we calculated: max = 0.44cm; x = 0.16cm; σ = 0.22cm. We also found that for 95% of our BH cases, the absolute variation in tumor position within the same imaging day was within 5mm of the range at the time of simulation and treatment. We found that 75% of the BH cases had less residual tumor motion on treatment days than at simulation. Conclusion: This suggests that a GTV contour based upon the residual tumor motion in multiple BH datasets plus 2 mm margin should be sufficient to cover the full range of residual tumor motion on treatment days.« less
  • Purpose: Accurate deformable image registration (DIR) between external beam radiotherapy (EBRT) and HDR brachytherapy (BT) CT images in cervical cancer is challenging. DSC has been evaluated only on the basis of the consistency of the structure, and its use does not guarantee an anatomically reasonable deformation. We evaluate the DIR accuracy for cervical cancer with DSC and anatomical landmarks using a 3D-printed pelvis phantom. Methods: A 3D-printed, deformable female pelvis phantom was created on the basis of the patient’s CT image. Urethane and silicon were used as materials for creating the uterus and bladder, respectively, in the phantom. We performedmore » DIR in two cases: case-A with a full bladder (170 ml) in both the EBRT and BT images and case-B with a full bladder in the BT image and a half bladder (100 ml) in the EBRT image. DIR was evaluated using DSCs and 70 uterus and bladder landmarks. A Hybrid intensity and structure DIR algorithm with two settings (RayStation) was used. Results: In the case-A, DSCs of the intensity-based DIR were 0.93 and 0.85 for the bladder and uterus, respectively, whereas those of hybrid-DIR were 0.98 and 0.96, respectively. The mean landmark error values of intensity-based DIR were 0.73±0.29 and 1.70±0.19 cm for the bladder and uterus, respectively, whereas those of Hybrid-DIR were 0.43±0.33 and 1.23±0.25 cm, respectively. In both cases, the Hybrid-DIR accuracy was better than the intensity-based DIR accuracy for both evaluation methods. However, for several bladder landmarks, the Hybrid-DIR landmark errors were larger than the corresponding intensity-based DIR errors (e.g., 2.26 vs 1.25 cm). Conclusion: Our results demonstrate that Hybrid-DIR can perform with a better accuracy than the intensity-based DIR for both DSC and landmark errors; however, Hybrid-DIR shows a larger landmark error for some landmarks because the technique focuses on both the structure and intensity.« less
  • Purpose: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (US{sub sim}), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CT{sub ps}) image that is more representative of the patients’ geometry during treatment than the CT acquired at simulation stage (CT{sub sim}). Methods: The three prostatemore » patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US–CT datasets each and the third one had five US–CT datasets. Deformation fields were computed between pairs of US images of the same patient and then applied to the corresponding US{sub sim} scan to yield a new deformed CT{sub ps} scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT (CT{sub gt}) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index (γ) evaluations on both the Hounsfield units (HUs) and the dose. Results: In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (γ{sub Dose}, 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CT images (γ{sub CT}, 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate. Conclusions: This new technique may generate CT{sub ps} images that are more representative of the actual patient anatomy than the CT{sub sim} scan.« less