skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy

Abstract

Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, themore » desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation.« less

Authors:
; ; ; ;  [1];  [2];  [2]
  1. Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University School of Medicine (United States) and Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
20775074
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 33; Journal Issue: 2; Other Information: DOI: 10.1118/1.2150778; (c) 2006 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; ALIGNMENT; COMPUTER GRAPHICS; COMPUTERIZED TOMOGRAPHY; IMAGES; ITERATIVE METHODS; NMR IMAGING; ORAL CAVITY; PATIENTS; RADIOTHERAPY; ROTATION; TELEVISION CAMERAS

Citation Formats

Li Shidong, Liu Dezhi, Yin Gongjie, Zhuang Ping, Geng, Jason, Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 and Genex Technologies, Inc., Kensington, Maryland 20895, and Genex Technologies, Inc., Kensington, Maryland 20895. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy. United States: N. p., 2006. Web. doi:10.1118/1.2150778.
Li Shidong, Liu Dezhi, Yin Gongjie, Zhuang Ping, Geng, Jason, Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 and Genex Technologies, Inc., Kensington, Maryland 20895, & Genex Technologies, Inc., Kensington, Maryland 20895. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy. United States. doi:10.1118/1.2150778.
Li Shidong, Liu Dezhi, Yin Gongjie, Zhuang Ping, Geng, Jason, Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 and Genex Technologies, Inc., Kensington, Maryland 20895, and Genex Technologies, Inc., Kensington, Maryland 20895. Wed . "Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy". United States. doi:10.1118/1.2150778.
@article{osti_20775074,
title = {Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy},
author = {Li Shidong and Liu Dezhi and Yin Gongjie and Zhuang Ping and Geng, Jason and Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 and Genex Technologies, Inc., Kensington, Maryland 20895 and Genex Technologies, Inc., Kensington, Maryland 20895},
abstractNote = {Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, the desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation.},
doi = {10.1118/1.2150778},
journal = {Medical Physics},
number = 2,
volume = 33,
place = {United States},
year = {Wed Feb 15 00:00:00 EST 2006},
month = {Wed Feb 15 00:00:00 EST 2006}
}
  • We describe an approach for external beam radiotherapy of breast cancer that utilizes the three-dimensional (3D) surface information of the breast. The surface data of the breast are obtained from a 3D optical camera that is rigidly mounted on the ceiling of the treatment vault. This 3D camera utilizes light in the visible range therefore it introduces no ionization radiation to the patient. In addition to the surface topographical information of the treated area, the camera also captures gray-scale information that is overlaid on the 3D surface image. This allows us to visualize the skin markers and automatically determine themore » isocenter position and the beam angles in the breast tangential fields. The field sizes and shapes of the tangential, supraclavicular, and internal mammary gland fields can all be determined according to the 3D surface image of the target. A least-squares method is first introduced for the tangential-field setup that is useful for compensation of the target shape changes. The entire process of capturing the 3D surface data and subsequent calculation of beam parameters typically requires less than 1 min. Our tests on phantom experiments and patient images have achieved the accuracy of 1 mm in shift and 0.5 deg. in rotation. Importantly, the target shape and position changes in each treatment session can both be corrected through this real-time image-guided system.« less
  • The purpose of this study was to evaluate the accuracy of a two-dimensional (2D) to three-dimensional (3D) image-fusion-guided target localization system and a mask based stereotactic system for fractionated stereotactic radiotherapy (FSRT) of cranial lesions. A commercial x-ray image guidance system originally developed for extracranial radiosurgery was used for FSRT of cranial lesions. The localization accuracy was quantitatively evaluated with an anthropomorphic head phantom implanted with eight small radiopaque markers (BBs) in different locations. The accuracy and its clinical reliability were also qualitatively evaluated for a total of 127 fractions in 12 patients with both kV x-ray images and MVmore » portal films. The image-guided system was then used as a standard to evaluate the overall uncertainty and reproducibility of the head mask based stereotactic system in these patients. The phantom study demonstrated that the maximal random error of the image-guided target localization was {+-}0.6 mm in each direction in terms of the 95% confidence interval (CI). The systematic error varied with measurement methods. It was approximately 0.4 mm, mainly in the longitudinal direction, for the kV x-ray method. There was a 0.5 mm systematic difference, primarily in the lateral direction, between the kV x-ray and the MV portal methods. The patient study suggested that the accuracy of the image-guided system in patients was comparable to that in the phantom. The overall uncertainty of the mask system was {+-}4 mm, and the reproducibility was {+-}2.9 mm in terms of 95% CI. The study demonstrated that the image guidance system provides accurate and precise target positioning.« less
  • Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less
  • Purpose: We report early preliminary experience with CyberKnife radiosurgery (RS) as salvage treatment for locally recurrent head and neck cancer (HNC). Methods and Materials: Between March 2004 and August 2006, 36 patients (44 sites) were treated with CyberKnife RS as reirradiation for locally recurrent HNC. Treatment sites were as follows: nasopharynx (8), maxillary sinus (8), neck lymph nodes (8), skull base (7), nasal cavity (4), retropharyngeal lymph nodes (3), orbit (2), and others (4). Total doses administered were 18-40 Gy (median, 30 Gy) in 3 to 5 fractions to the 65%-85% isodose line for 3-5 consecutive days. Previous external radiationmore » dose ranged from 39.6 to 134.4 Gy (median, 70.2 Gy). Gross tumor volume ranged from 0.2 to 114.9 cm{sup 3} (median, 22.6 cm{sup 3}). Median follow-up was 17.3 months. Results: Thirty-five of 44 sites were evaluated for response. Fifteen (42.9%) sites achieved complete response, 13 sites (37.1%) achieved a partial response, 3 (8.6%) sites maintained stable disease, and 4 sites (11.4%) showed tumor progression. Grade III acute complications were noted in 13 patients. Late complications were observed in three patients (1 bone necrosis, 2 soft tissue necrosis) during follow-up. Conclusion: These preliminary results suggest that fractionated stereotactic radiosurgery is an effective treatment modality as a salvage treatment with good short-term local control. The early overall response rate is encouraging. However, more experience and a longer follow-up are necessary to determine the role of fractionated stereotactic radiosurgery as a salvage treatment of locally recurrent HNC and to define long-term complications.« less
  • Fractionated stereotactic radiotherapy (SRT) requires accurate and reproducible immobilization of the patient's head. This randomized study compared the efficacy of two commonly used forms of immobilization used for SRT. Two routinely used methods of immobilization, which differ in their approach to reproduce the head position from day to day, are the Gill-Thomas-Cosman (GTC) frame and the BrainLab thermoplastic mask. The GTC frame fixates on the patient's upper dentition and thus is in direct mechanical contact with the cranium. The BrainLab mask is a two-part masking system custom fitted to the front and back of the patient's head. After patients signedmore » an IRB-approved informed consent form, eligible patients were randomized to either GTC frame or mask for their course of SRT. Patients were treated as per standard procedure; however, prior to each treatment a set of digital kilovolt images (ExacTrac, BrainLabAB, Germany) was taken. These images were fused with reference digitally reconstructed radiographs obtained from treatment planning CT to yield lateral, longitudinal, and vertical deviations of isocenter and head rotations about respective axes. The primary end point of the study was to compare the two systems with respect to mean and standard deviations using the distance to isocenter measure. A total of 84 patients were enrolled (69 patients evaluable with detailed positioning data). A mixed-effect linear regression and two-tiled t test were used to compare the distance measure for both the systems. There was a statistically significant (p<0.001) difference between mean distances for these systems, suggesting that the GTC frame was more accurate. The mean 3D displacement and standard deviations were 3.17+1.95 mm for mask and 2.00+1.04 mm for frame. Both immobilization techniques were highly effective, but the GTC frame was more accurate. To optimize the accuracy of SRT, daily kilovolt image guidance is recommended with either immobilization system.« less