skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Open string in the constant B-field background

Abstract

A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided.

Authors:
;  [1];  [2]
  1. Department of Physics and Electronic, School of Science, Beijing University of Chemical Technology, Beijing 100029 (China)
  2. (China)
Publication Date:
OSTI Identifier:
20774556
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. D, Particles Fields; Journal Volume: 72; Journal Issue: 12; Other Information: DOI: 10.1103/PhysRevD.72.126002; (c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COORDINATES; MEMBRANES; QUANTUM FIELD THEORY; QUANTUM OPERATORS; STRING MODELS

Citation Formats

Jing Jian, Long Zhengwen, and Laboratory for photoelectric technology and application, Department of Physics, GuiZhou University, GuiYang 550025. Open string in the constant B-field background. United States: N. p., 2005. Web. doi:10.1103/PhysRevD.72.126002.
Jing Jian, Long Zhengwen, & Laboratory for photoelectric technology and application, Department of Physics, GuiZhou University, GuiYang 550025. Open string in the constant B-field background. United States. doi:10.1103/PhysRevD.72.126002.
Jing Jian, Long Zhengwen, and Laboratory for photoelectric technology and application, Department of Physics, GuiZhou University, GuiYang 550025. Thu . "Open string in the constant B-field background". United States. doi:10.1103/PhysRevD.72.126002.
@article{osti_20774556,
title = {Open string in the constant B-field background},
author = {Jing Jian and Long Zhengwen and Laboratory for photoelectric technology and application, Department of Physics, GuiZhou University, GuiYang 550025},
abstractNote = {A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided.},
doi = {10.1103/PhysRevD.72.126002},
journal = {Physical Review. D, Particles Fields},
number = 12,
volume = 72,
place = {United States},
year = {Thu Dec 15 00:00:00 EST 2005},
month = {Thu Dec 15 00:00:00 EST 2005}
}
  • In this paper, an open fermionic string propagating freely and one moving in a constant antisymmetric background field are discussed. In contrast to several discussions in which boundary conditions are taken as primary Dirac constraints, we get the anti-Poisson brackets among the Fourier modes first. Then the anti-Poisson brackets among the string's coordinates can be obtained. It is shown that due to nontrivial boundary conditions, the string's end points are antinoncommutative. Contrary to the previous approaches in which the antinoncommutativity is obtained as the algebraic result, we find that antinoncommutativity originates dynamically.
  • To study noncommutativity properties of the open string with constant B field, we construct a mechanical action that reproduces classical dynamics of the string sector under consideration. It allows one to apply the Dirac quantization procedure for constrained systems in a direct and unambiguous way. The mechanical action turns out to be the first order system without taking the strong field limit B{yields}{infinity}. In particular, it is true for the zero mode of the string coordinate, which means that the noncommutativity is an intrinsic property of this mechanical system. We describe the arbitrariness in the relation existing between the mechanicalmore » and the string variables and show that noncommutativity of the string variables on the boundary can be removed. This is in correspondence with the result of Seiberg and Witten on the relation among noncommutative and ordinary Yang-Mills theories. The recently developed soldering formalism helps us to establish a connection between the original open string action and the Polyakov action.« less
  • A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator.
  • This paper discusses how to define star product and integration in a strong field theory formulated in a background provided by an arbitrary conformal field theory on the upper half-plane with central charge 26.
  • One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e{sub {mu}{sigma}}{sup {nu}{rho}}, which allows us to gauge the string length and {sigma} parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or themore » interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included.« less