skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The UF series of tomographic computational phantoms of pediatric patients

Abstract

Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvismore » CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be matched to reference values in both stylized and tomographic phantoms, side-by-side comparisons of organ doses in both phantom classes indicate that organ shape and positioning are equally important parameters to consider in accurate determinations of organ absorbed dose from external photon irradiation. Preliminary studies of external photon irradiation of the 11-year phantom indicate significant departures of organ dose coefficients from that predicted by the existing stylized phantom series. Notable differences between pediatric stylized and tomographic phantoms include anterior-posterior (AP) and right lateral (RLAT) irradiation of the stomach wall, left lateral (LLAT) and right lateral (RLAT) irradiation of the thyroid, and AP and posterior-anterior (PA) irradiation of the urinary bladder.« less

Authors:
; ; ;  [1];  [2];  [2];  [2]
  1. Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
20726854
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 32; Journal Issue: 12; Other Information: DOI: 10.1118/1.2107067; (c) 2005 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ADIPOSE TISSUE; BLADDER; COMPUTERIZED TOMOGRAPHY; HEAD; IMAGE PROCESSING; IMAGES; IRRADIATION; LUNGS; MONTE CARLO METHOD; PATIENTS; PHANTOMS; PHOTONS; RADIATION DOSES; RADIOTHERAPY; SKELETON; SKIN; STOMACH; THYROID

Citation Formats

Lee, Choonik, Williams, Jonathan L., Lee, Choonsik, Bolch, Wesley E., Department of Radiology, University of Florida, Gainesville, Florida 32610, Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611, and Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611. The UF series of tomographic computational phantoms of pediatric patients. United States: N. p., 2005. Web. doi:10.1118/1.2107067.
Lee, Choonik, Williams, Jonathan L., Lee, Choonsik, Bolch, Wesley E., Department of Radiology, University of Florida, Gainesville, Florida 32610, Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611, & Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611. The UF series of tomographic computational phantoms of pediatric patients. United States. doi:10.1118/1.2107067.
Lee, Choonik, Williams, Jonathan L., Lee, Choonsik, Bolch, Wesley E., Department of Radiology, University of Florida, Gainesville, Florida 32610, Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611, and Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611. Thu . "The UF series of tomographic computational phantoms of pediatric patients". United States. doi:10.1118/1.2107067.
@article{osti_20726854,
title = {The UF series of tomographic computational phantoms of pediatric patients},
author = {Lee, Choonik and Williams, Jonathan L. and Lee, Choonsik and Bolch, Wesley E. and Department of Radiology, University of Florida, Gainesville, Florida 32610 and Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 and Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611},
abstractNote = {Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvis CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be matched to reference values in both stylized and tomographic phantoms, side-by-side comparisons of organ doses in both phantom classes indicate that organ shape and positioning are equally important parameters to consider in accurate determinations of organ absorbed dose from external photon irradiation. Preliminary studies of external photon irradiation of the 11-year phantom indicate significant departures of organ dose coefficients from that predicted by the existing stylized phantom series. Notable differences between pediatric stylized and tomographic phantoms include anterior-posterior (AP) and right lateral (RLAT) irradiation of the stomach wall, left lateral (LLAT) and right lateral (RLAT) irradiation of the thyroid, and AP and posterior-anterior (PA) irradiation of the urinary bladder.},
doi = {10.1118/1.2107067},
journal = {Medical Physics},
number = 12,
volume = 32,
place = {United States},
year = {Thu Dec 15 00:00:00 EST 2005},
month = {Thu Dec 15 00:00:00 EST 2005}
}
  • Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, andmore » manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm{sup 3} for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian), and stylized ORNL phantom. The armless KTMAN-1 can be applied to dosimetry for computed tomography or lateral x-ray examination, while the whole body KTMAN-2 can be used for radiation protection dosimetry.« less
  • Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms -more » takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and female phantoms were further developed from the 50th percentile phantoms through adjustments in the body contour to match the total body masses given in CDC pediatric growth curves. The resulting six NURBS phantoms, male and female phantoms representing their 10th, 50th, and 90th weight percentiles, were used to investigate the influence of body fat distributions on internal organ doses following CT imaging. The phantoms were exposed to multislice chest and abdomen helical CT scans, and in-field organ absorbed doses were calculated. The results demonstrated that the use of traditional stylized phantoms yielded organ dose estimates that deviate from those given by the UF reference hybrid phantoms by up to a factor of 2. The study also showed that use of reference, or 50th percentile, phantoms to assess organ doses in underweight 15-year-old children would not lead to significant organ dose errors (typically less than 10%). However, more significant errors were noted (up to {approx}30%) when reference phantoms are used to represent overweight children in CT imaging dosimetry. These errors are expected to only further increase as one considers CT organ doses in overweight and obese individuals of the adult patient population, thus emphasizing the advantages of patient-sculptable phantom technology.« less
  • Purpose: To quantify the dosimetric uncertainty due to organ position errors when using height and weight as phantom selection criteria in the UF/NCI Hybrid Phantom Library for the purpose of out-of-field organ dose reconstruction. Methods: Four diagnostic patient CT images were used to create 7-field IMRT plans. For each patient, dose to the liver, right lung, and left lung were calculated using the XVMC Monte Carlo code. These doses were taken to be the ground truth. For each patient, the phantom with the most closely matching height and weight was selected from the body size dependent phantom library. The patientmore » plans were then transferred to the computational phantoms and organ doses were recalculated. Each plan was also run on 4 additional phantoms with reference heights and or weights. Maximum and mean doses for the three organs were computed, and the DVHs were extracted and compared. One sample t-tests were performed to compare the accuracy of the height and weight matched phantoms against the additional phantoms in regards to both maximum and mean dose. Results: For one of the patients, the height and weight matched phantom yielded the most accurate results across all three organs for both maximum and mean doses. For two additional patients, the matched phantom yielded the best match for one organ only. In 13 of the 24 cases, the matched phantom yielded better results than the average of the other four phantoms, though the results were only statistically significant at the .05 level for three cases. Conclusion: Using height and weight matched phantoms does yield better results in regards to out-of-field dosimetry than using average phantoms. Height and weight appear to be moderately good selection criteria, though this selection criteria failed to yield any better results for one patient.« less
  • Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dosemore » to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This research was supported by the NIH Intramural Research Program.« less
  • Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less