skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A software package to manipulate space dependencies and geometry in magnetic confinement fusion

Abstract

Improvement in the performance of magnetic confinement devices for nuclear fusion relies on the optimization of the geometry of the plasma: either the two-dimensional (2D) cross-section shape in tokamaks with toroidal symmetry or the 3D magnetic configuration in stellerators. The variation in time and space of the plasma parameters in these devices is measured using tomographic or imaging systems with a large number of detectors. To integrate the geometrical manipulations required for the analysis of experimental data, the description of the confining magnetic field configuration and the modeling and simulation of the physical processes within the plasma, an object oriented software package has been developed. Classes in this package are used to describe several coordinate systems, including magnetic flux coordinates, the geometry of the measurement systems, the configuration of the magnetic field and space, and time dependent functions representing plasma parameters. Methods applied on these classes can then easily implement coordinate system transformations, as well as interpolation of and integro-differential calculus on, space and time dependent functions. The geometrical description and characteristics of the magnetic flux surfaces have a natural representation in this environment, allowing the ready computation of the intersection of measurement viewing lines with a coordinate mesh andmore » with flux surfaces, as well as the calculation of the corresponding transfer matrix used in tomographic inversion. The selected numerical methods used in these manipulations and their performances are also presented.« less

Authors:
 [1]
  1. CRPP-EPFL, Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)
Publication Date:
OSTI Identifier:
20722964
Resource Type:
Journal Article
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 76; Journal Issue: 7; Other Information: DOI: 10.1063/1.1946608; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0034-6748
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; COMPUTER CODES; CONFIGURATION; EQUIPMENT; GEOMETRY; INTERPOLATION; MAGNETIC CONFINEMENT; MAGNETIC FIELDS; MAGNETIC FLUX; MAGNETIC FLUX COORDINATES; MAGNETIC SURFACES; PERFORMANCE; PLASMA; PLASMA DIAGNOSTICS; PLASMA SIMULATION; TIME DEPENDENCE; TOKAMAK DEVICES

Citation Formats

Moret, J -M. A software package to manipulate space dependencies and geometry in magnetic confinement fusion. United States: N. p., 2005. Web. doi:10.1063/1.1946608.
Moret, J -M. A software package to manipulate space dependencies and geometry in magnetic confinement fusion. United States. https://doi.org/10.1063/1.1946608
Moret, J -M. 2005. "A software package to manipulate space dependencies and geometry in magnetic confinement fusion". United States. https://doi.org/10.1063/1.1946608.
@article{osti_20722964,
title = {A software package to manipulate space dependencies and geometry in magnetic confinement fusion},
author = {Moret, J -M},
abstractNote = {Improvement in the performance of magnetic confinement devices for nuclear fusion relies on the optimization of the geometry of the plasma: either the two-dimensional (2D) cross-section shape in tokamaks with toroidal symmetry or the 3D magnetic configuration in stellerators. The variation in time and space of the plasma parameters in these devices is measured using tomographic or imaging systems with a large number of detectors. To integrate the geometrical manipulations required for the analysis of experimental data, the description of the confining magnetic field configuration and the modeling and simulation of the physical processes within the plasma, an object oriented software package has been developed. Classes in this package are used to describe several coordinate systems, including magnetic flux coordinates, the geometry of the measurement systems, the configuration of the magnetic field and space, and time dependent functions representing plasma parameters. Methods applied on these classes can then easily implement coordinate system transformations, as well as interpolation of and integro-differential calculus on, space and time dependent functions. The geometrical description and characteristics of the magnetic flux surfaces have a natural representation in this environment, allowing the ready computation of the intersection of measurement viewing lines with a coordinate mesh and with flux surfaces, as well as the calculation of the corresponding transfer matrix used in tomographic inversion. The selected numerical methods used in these manipulations and their performances are also presented.},
doi = {10.1063/1.1946608},
url = {https://www.osti.gov/biblio/20722964}, journal = {Review of Scientific Instruments},
issn = {0034-6748},
number = 7,
volume = 76,
place = {United States},
year = {Fri Jul 15 00:00:00 EDT 2005},
month = {Fri Jul 15 00:00:00 EDT 2005}
}