Threedimensional vortex structure of a fast rotating BoseEinstein condensate with harmonicplusquartic confinement
Abstract
We address the challenging proposition of using real experimental parameters in a threedimensional (3D) numerical simulation of fast rotating BoseEinstein condensates. We simulate recent experiments [V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004); S. Stock, V. Bretin, S. Stock, F. Chevy, and J. Dalibard, Europhys. Lett. 65, 594 (2004)] using an anharmonic (quadraticplusquartic) confining potential to reach rotation frequencies ({omega}) above the trap frequency ({omega}{sub perpendicular}). Our numerical results are obtained by propagating the 3D GrossPitaevskii equation in imaginary time. For {omega}{<=}{omega}{sub perpendicular}, we obtain an equilibrium vortex lattice similar (as the size and number of vortices) to experimental observations. For {omega}>{omega}{sub perpendicular} we observe the evolution of the vortex lattice into an array of vortices with a central hole. Since this evolution was not visible in experiments, we investigate the 3D structure of vortex configurations and 3D effects on vortex contrast. Numerical data are also compared to recent theory [D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 063620 (2004)] describing vortex lattice inhomogeneities and a remarkably good agreement is found.
 Authors:

 Laboratoire JacquesLouis Lions, Universite Paris 6, 175 rue du Chevaleret, 75013 Paris (France)
 Publication Date:
 OSTI Identifier:
 20718397
 Resource Type:
 Journal Article
 Journal Name:
 Physical Review. A
 Additional Journal Information:
 Journal Volume: 72; Journal Issue: 1; Other Information: DOI: 10.1103/PhysRevA.72.013605; (c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 10502947
 Country of Publication:
 United States
 Language:
 English
 Subject:
 74 ATOMIC AND MOLECULAR PHYSICS; BOSEEINSTEIN CONDENSATION; COMPUTERIZED SIMULATION; EQUILIBRIUM; NUMERICAL DATA; POTENTIALS; ROTATION; THREEDIMENSIONAL CALCULATIONS; TRAPS; VORTICES; WAVE EQUATIONS
Citation Formats
Danaila, Ionut. Threedimensional vortex structure of a fast rotating BoseEinstein condensate with harmonicplusquartic confinement. United States: N. p., 2005.
Web. doi:10.1103/PhysRevA.72.013605.
Danaila, Ionut. Threedimensional vortex structure of a fast rotating BoseEinstein condensate with harmonicplusquartic confinement. United States. https://doi.org/10.1103/PhysRevA.72.013605
Danaila, Ionut. Fri .
"Threedimensional vortex structure of a fast rotating BoseEinstein condensate with harmonicplusquartic confinement". United States. https://doi.org/10.1103/PhysRevA.72.013605.
@article{osti_20718397,
title = {Threedimensional vortex structure of a fast rotating BoseEinstein condensate with harmonicplusquartic confinement},
author = {Danaila, Ionut},
abstractNote = {We address the challenging proposition of using real experimental parameters in a threedimensional (3D) numerical simulation of fast rotating BoseEinstein condensates. We simulate recent experiments [V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004); S. Stock, V. Bretin, S. Stock, F. Chevy, and J. Dalibard, Europhys. Lett. 65, 594 (2004)] using an anharmonic (quadraticplusquartic) confining potential to reach rotation frequencies ({omega}) above the trap frequency ({omega}{sub perpendicular}). Our numerical results are obtained by propagating the 3D GrossPitaevskii equation in imaginary time. For {omega}{<=}{omega}{sub perpendicular}, we obtain an equilibrium vortex lattice similar (as the size and number of vortices) to experimental observations. For {omega}>{omega}{sub perpendicular} we observe the evolution of the vortex lattice into an array of vortices with a central hole. Since this evolution was not visible in experiments, we investigate the 3D structure of vortex configurations and 3D effects on vortex contrast. Numerical data are also compared to recent theory [D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 063620 (2004)] describing vortex lattice inhomogeneities and a remarkably good agreement is found.},
doi = {10.1103/PhysRevA.72.013605},
url = {https://www.osti.gov/biblio/20718397},
journal = {Physical Review. A},
issn = {10502947},
number = 1,
volume = 72,
place = {United States},
year = {2005},
month = {7}
}