skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques

Abstract

Background: Oropharynx cancers treated with intensity-modulated radiation (IMRT) are often treated with a monoisocentric or half-beam technique (HB). IMRT is delivered to the primary tumor and upper neck alone, while the lower neck is treated with a matching anterior beam. Because IMRT can treat the entire volume or whole field (WF), the primary aim of the study was to test the ability to plan cases using WF-IMRT while obtaining an optimal plan and acceptable dose distribution and also respecting normal critical structures. Methods and Materials: Thirteen patients with early-stage oropharynx cancers had treatment plans created with HB-IMRT and WF-IMRT techniques. Plans were deemed acceptable if they met the planning guidelines (as defined or with minor violations) of the Radiation Therapy Oncology Group protocol H0022. Comparisons included coverage to the planning target volume (PTV) of the primary (PTV66) and subclinical disease (PTV54). We also compared the ability of both techniques to respect the tolerance of critical structures. Results: The volume of PTV66 treated to >110% was less in 9 of the 13 patients in the WF-IMRT plan as compared to the HB-IMRT plan. The calculated mean volume receiving >110% for all patients planned with WF-IMRT was 9.3% (0.8%-25%) compared to 13.7%more » (2.7%-23.7%) with HB-IMRT (p = 0.09). The PTV54 volume receiving >110% of dose was less in 10 of the 13 patients planned with WF-IMRT compared to HB-IMRT. The mean doses to all critical structures except the larynx were comparable with each plan. The mean dose to the larynx was significantly less (p = 0.001), 18.7 Gy, with HB-IMRT compared to 47 Gy with WF-IMRT. Conclusions: Regarding target volumes, acceptable plans can be generated with either WF-IMRT or HB-IMRT. WF-IMRT has an advantage if uncertainty at the match line is a concern, whereas HB-IMRT, particularly in cases not involving the base of tongue, can achieve much lower doses to the larynx.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)
  2. Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States). E-mail: agarden@mdanderson.org
Publication Date:
OSTI Identifier:
20706240
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 63; Journal Issue: 4; Other Information: DOI: 10.1016/j.ijrobp.2005.03.069; PII: S0360-3016(05)00708-X; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CARCINOMAS; HEAD; LARYNX; LETHAL DOSES; NECK; PATIENTS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; RECOMMENDATIONS; TOLERANCE; TONGUE

Citation Formats

Dabaja, Bouthaina, Salehpour, Mohammad R., Rosen, Isaac, Tung, Sam, Morrison, William H., Ang, K. Kian, and Garden, Adam S.. Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques. United States: N. p., 2005. Web. doi:10.1016/j.ijrobp.2005.03.069.
Dabaja, Bouthaina, Salehpour, Mohammad R., Rosen, Isaac, Tung, Sam, Morrison, William H., Ang, K. Kian, & Garden, Adam S.. Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques. United States. doi:10.1016/j.ijrobp.2005.03.069.
Dabaja, Bouthaina, Salehpour, Mohammad R., Rosen, Isaac, Tung, Sam, Morrison, William H., Ang, K. Kian, and Garden, Adam S.. Tue . "Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques". United States. doi:10.1016/j.ijrobp.2005.03.069.
@article{osti_20706240,
title = {Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques},
author = {Dabaja, Bouthaina and Salehpour, Mohammad R. and Rosen, Isaac and Tung, Sam and Morrison, William H. and Ang, K. Kian and Garden, Adam S.},
abstractNote = {Background: Oropharynx cancers treated with intensity-modulated radiation (IMRT) are often treated with a monoisocentric or half-beam technique (HB). IMRT is delivered to the primary tumor and upper neck alone, while the lower neck is treated with a matching anterior beam. Because IMRT can treat the entire volume or whole field (WF), the primary aim of the study was to test the ability to plan cases using WF-IMRT while obtaining an optimal plan and acceptable dose distribution and also respecting normal critical structures. Methods and Materials: Thirteen patients with early-stage oropharynx cancers had treatment plans created with HB-IMRT and WF-IMRT techniques. Plans were deemed acceptable if they met the planning guidelines (as defined or with minor violations) of the Radiation Therapy Oncology Group protocol H0022. Comparisons included coverage to the planning target volume (PTV) of the primary (PTV66) and subclinical disease (PTV54). We also compared the ability of both techniques to respect the tolerance of critical structures. Results: The volume of PTV66 treated to >110% was less in 9 of the 13 patients in the WF-IMRT plan as compared to the HB-IMRT plan. The calculated mean volume receiving >110% for all patients planned with WF-IMRT was 9.3% (0.8%-25%) compared to 13.7% (2.7%-23.7%) with HB-IMRT (p = 0.09). The PTV54 volume receiving >110% of dose was less in 10 of the 13 patients planned with WF-IMRT compared to HB-IMRT. The mean doses to all critical structures except the larynx were comparable with each plan. The mean dose to the larynx was significantly less (p = 0.001), 18.7 Gy, with HB-IMRT compared to 47 Gy with WF-IMRT. Conclusions: Regarding target volumes, acceptable plans can be generated with either WF-IMRT or HB-IMRT. WF-IMRT has an advantage if uncertainty at the match line is a concern, whereas HB-IMRT, particularly in cases not involving the base of tongue, can achieve much lower doses to the larynx.},
doi = {10.1016/j.ijrobp.2005.03.069},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 63,
place = {United States},
year = {Tue Nov 15 00:00:00 EST 2005},
month = {Tue Nov 15 00:00:00 EST 2005}
}
  • Purpose: To date, most intensity-modulated radiation therapy (IMRT) delivery has occurred using linear accelerators (linacs), although helical tomotherapy has become commercially available. To quantify the dosimetric difference, we compared linac-based and helical tomotherapy-based treatment plans for IMRT of the oropharynx. Methods and Materials: We compared the dosimetry findings of 10 patients who had oropharyngeal carcinoma. Five patients each had cancers in the base of the tongue and tonsil. Each plan was independently optimized using either the CORVUS planning system (Nomos Corporation, Sewickly, PA), commissioned for a Varian 2300 CD linear accelerator (Varian Medical Systems, Palo Alto, CA) with 1-cm multileafmore » collimator leaves, or helical tomotherapy. The resulting treatment plans were evaluated by comparing the dose-volume histograms, equivalent uniform dose (EUD), dose uniformity, and normal tissue complication probabilities. Results: Helical tomotherapy plans showed improvement of critical structure avoidance and target dose uniformity for all patients. The average equivalent uniform dose reduction for organs at risk (OARs) surrounding the base of tongue and the tonsil were 17.4% and 27.14% respectively. An 80% reduction in normal tissue complication probabilities for the parotid glands was observed in the tomotherapy plans relative to the linac-based plans. The standard deviation of the planning target volume dose was reduced by 71%. In our clinic, we use the combined dose-volume histograms for each class of plans as a reference goal for helical tomotherapy treatment planning optimization. Conclusions: Helical tomotherapy provides improved dose homogeneity and normal structure dose compared with linac-based IMRT in the treatment of oropharyngeal carcinoma resulting in a reduced risk for complications from focal hotspots within the planning target volume and for the adjacent parotid glands.« less
  • Purpose: Anatomic changes and positional variability during intensity-modulated radiation therapy (IMRT) for head and neck cancer can lead to clinically significant dosimetric changes. We report our single-institution experience using an adaptive protocol and correlate these changes with anatomic and positional changes during treatment. Methods and Materials: Twenty-three sequential head and neck IMRT patients underwent serial computed tomography (CT) scans during their radiation course. After undergoing the planning CT scan, patients underwent planned rescans at 11, 22, and 33 fractions; a total of 89 scans with 129 unique CT plan combinations were thus analyzed. Positional variability and anatomic changes during treatmentmore » were correlated with changes in dosimetric parameters to target and avoidance structures between planning CT and subsequent scans. Results: A total of 15/23 patients (65%) benefited from adaptive planning, either due to inadequate dose to gross disease or to increased dose to organs at risk. Significant differences in primary and nodal targets (planning target volume, gross tumor volume, and clinical tumor volume), parotid, and spinal cord dosimetric parameters were noted throughout the treatment. Correlations were established between these dosimetric changes and weight loss, fraction number, multiple skin separations, and change in position of the skull, mandible, and cervical spine. Conclusions: Variations in patient positioning and anatomy changes during IMRT for head and neck cancer can affect dosimetric parameters and have wide-ranging clinical implications. The interplay between random positional variability and gradual anatomic changes requires careful clinical monitoring and frequent use of CT- based image-guided radiation therapy, which should determine variations necessitating new plans.« less
  • Purpose: To review our 15-year institutional experience using intensity modulated radiation therapy (IMRT) to reirradiate patients with head and neck squamous cell carcinomas (HNSCC) and identify predictors of outcomes and toxicity. Methods and Materials: We retrospectively reviewed the records of 227 patients who received head and neck reirradiation using IMRT from 1999 to 2014. Patients treated with noncurative intent were excluded. Radiation-related acute and late toxicities were recorded. Prognostic variables included performance status, disease site, disease-free interval, chemotherapy, and RT dose and volume. Correlative analyses were performed separately for surgery and nonsurgery patients. Results: Two hundred six patients (91%) were retreatedmore » with curative intent, and 173 had HNSCC histology; 104 (50%) underwent salvage resection, and 135 (66%) received chemotherapy. Median follow-up after reirradiation was 24.7 months. Clinical outcomes were worse for HNSCC patients, with 5-year locoregional control, progression-free survival, and overall survival rates of 53%, 22%, and 32%, respectively, compared with 74%, 59%, and 79%, respectively, for non-HNSCC patients. On multivariate analysis, concurrent chemotherapy and retreatment site were associated with tumor control, whereas performance status was associated with survival. Favorable prognostic factors specific to surgery patients were neck retreatment and lack of extracapsular extension, whereas for nonsurgery patients, these were a nasopharynx subsite and complete response to induction chemotherapy. Actuarial rates of grade ≥3 toxicity were 32% at 2 years and 48% at 5 years, with dysphagia or odynophagia being most common. Increased grade ≥3 toxicity was associated with retreatment volume >50 cm{sup 3} and concurrent chemotherapy. Conclusions: Reirradiation with IMRT either definitively or after salvage surgery can produce promising local control and survival in selected patients with head and neck cancers. Treatment-related toxicity remains significant. Prognostic factors are emerging to guide multidisciplinary treatment approaches and clinical trial design.« less
  • Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed onmore » an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.« less
  • Purpose: There is increasing evidence that decline in cognitive function following brain radiotherapy (RT) is related to the radiation dose delivered to the hippocampi. In this work we evaluate the feasibility of using IMRT to generate HSRT plans in HNC. Methods: A planning study was undertaken for ten representative patients with HNC previously treated with radical (chemo)-RT using standard IMRT techniques. The hippocampi were delineated according to the RTOG hippocampal contouring atlas, on a T1w- MRI scan that was registered with the RT planning CT. LINAC-based, clinically acceptable, HSRT plans were generated and assessed using the Pinnacle3 treatment planning system.more » Results: Using a VMAT technique, a reduction in hippocampal dose was achievable in six cases. For these cases, the EQD2-D40% of the bilateral hippocampi was significantly reduced by HSRT (p = 0.006) from a median of 18.8Gy (range 14.4–34.6) to 6.5 Gy (4.2–9.5) for the delivered and HSRT plans respectively. Plans were also generated using a fixed-field IMRT technique with non-coplanar beams that were designed to avoid the bilateral hippocampi, resulting in a median EQD2-D40% of 11.2Gy (8.0–14.5). Both HSRT techniques also resulted in lower doses to the whole brain, brain stem, and cerebellum. The HSRT plans resulted in higher doses to some regions of non-contoured normaltissue, but the magnitude of these dose differences is unlikely to be of clinical significance in terms of acute and late toxicity. Conclusion: This study has demonstrated that it is possible, in many cases, to adapt treatment plans for HNC to significantly reduce dose to the hippocampi. This reduction in dose would be predicted to Resultin a significant reduction in the probability of subsequent decline in cognitive function following RT. Our results point towards the need for the collection of prospective data on cognitive outcomes for the HNC patient population treated with radical (chemo)-RT.« less