skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large-eddy simulation of a bluff-body stabilized nonpremixed flame

Abstract

Large-eddy simulations have been performed for a turbulent nonpremixed bluff-body stabilized CH{sub 4}:H{sub 2} (50:50 vol.) flame at a Reynolds number of 15,800. The corresponding isothermal flow has also been computed. The Sydney bluff-body burner under consideration has been investigated experimentally by Masri and co-workers, who obtained velocity and scalar statistics. The focus of the current work is on flow and mixing effects with the thermochemistry evaluated using a steady-state laminar flamelet approach. The incompressible (low-Mach-number) governing equations for mass, momentum, and mixture-fraction have been solved on a structured cylindrical grid and resolution effects investigated using up to 3.643x10{sup 6} nodes. The corresponding nonreactive case was resolved by 5.76x10{sup 5} nodes, resulting in a resolution of more than 80% of the turbulence kinetic energy. The reacting case yields a resolution in excess of 75% on the finest grid--arguably sufficient to permit conclusions regarding the accuracy of submodels. Comparisons with experimental data show that for high resolutions comparatively good agreement is obtained for the flow field and for species other than nitric oxide. However, resolution effects are important and results obtained with 4.51x10{sup 5} nodes show that a resolution of less than 70% of the turbulent kinetic energy is insufficient inmore » the context of the Smagorinsky subgrid model combined with the dynamic procedure of Germano. The latter result is consistent with the analysis of Pope.« less

Authors:
;  [1];  [2]
  1. Thermofluids Division, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)
  2. Chair for Energy and Powerplant Technology, Department of Mechanical Engineering, Darmstadt Technical University, Petersenstr. 30, 64287 Darmstadt (Germany)
Publication Date:
OSTI Identifier:
20685985
Resource Type:
Journal Article
Resource Relation:
Journal Name: Combustion and Flame; Journal Volume: 144; Journal Issue: 1-2; Other Information: Elsevier Ltd. All rights reserved
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; FLAMES; BURNERS; COMPUTERIZED SIMULATION; TURBULENCE; METHANE; HYDROGEN; GAS FLOW; COMBUSTION KINETICS; CALCULATION METHODS; ACCURACY

Citation Formats

Kempf, A., Lindstedt, R.P., and Janicka, J. Large-eddy simulation of a bluff-body stabilized nonpremixed flame. United States: N. p., 2006. Web. doi:10.1016/j.combustflame.2005.07.006.
Kempf, A., Lindstedt, R.P., & Janicka, J. Large-eddy simulation of a bluff-body stabilized nonpremixed flame. United States. doi:10.1016/j.combustflame.2005.07.006.
Kempf, A., Lindstedt, R.P., and Janicka, J. Sun . "Large-eddy simulation of a bluff-body stabilized nonpremixed flame". United States. doi:10.1016/j.combustflame.2005.07.006.
@article{osti_20685985,
title = {Large-eddy simulation of a bluff-body stabilized nonpremixed flame},
author = {Kempf, A. and Lindstedt, R.P. and Janicka, J.},
abstractNote = {Large-eddy simulations have been performed for a turbulent nonpremixed bluff-body stabilized CH{sub 4}:H{sub 2} (50:50 vol.) flame at a Reynolds number of 15,800. The corresponding isothermal flow has also been computed. The Sydney bluff-body burner under consideration has been investigated experimentally by Masri and co-workers, who obtained velocity and scalar statistics. The focus of the current work is on flow and mixing effects with the thermochemistry evaluated using a steady-state laminar flamelet approach. The incompressible (low-Mach-number) governing equations for mass, momentum, and mixture-fraction have been solved on a structured cylindrical grid and resolution effects investigated using up to 3.643x10{sup 6} nodes. The corresponding nonreactive case was resolved by 5.76x10{sup 5} nodes, resulting in a resolution of more than 80% of the turbulence kinetic energy. The reacting case yields a resolution in excess of 75% on the finest grid--arguably sufficient to permit conclusions regarding the accuracy of submodels. Comparisons with experimental data show that for high resolutions comparatively good agreement is obtained for the flow field and for species other than nitric oxide. However, resolution effects are important and results obtained with 4.51x10{sup 5} nodes show that a resolution of less than 70% of the turbulent kinetic energy is insufficient in the context of the Smagorinsky subgrid model combined with the dynamic procedure of Germano. The latter result is consistent with the analysis of Pope.},
doi = {10.1016/j.combustflame.2005.07.006},
journal = {Combustion and Flame},
number = 1-2,
volume = 144,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • A large-eddy simulation (LES) of a bluff-body-stabilized flame has been carried out using a new strategy for LES grid generation. The recursive filter-refinement procedure (RFRP) has been used to generate optimized clustering for variable density combustion simulations. A methane-hydrogen fuel-based bluff-body-stabilized experimental configuration has been simulated using state-of-the-art LES algorithms and subfilter models. The combustion chemistry is described using a precomputed, laminar flamelet model-based look-up table. The GRI-2.11 mechanism is used to build the look-up table parameterized by mixture fraction and scalar dissipation rate. A beta function is used for the subfilter mixture fraction filtered density function (FDF). The simulationsmore » show good agreement with experimental data for the velocity field. Time-averaged profiles of major species and temperature are very well reproduced by the simulation. The mixture fraction profiles show excellent agreement at all locations, which helps in understanding the validity of flamelet assumption for this flame. The results indicate that LES computations are able to quantitatively predict the flame structure quite accurately using the laminar flamelet model. Simulations tend to corroborate experimental evidence that local extinction is not significant for this flame.« less
  • Large Eddy Simulations (LES) of forced ignition of a bluff-body stabilised non-premixed methane flame using the Conditional Moment Closure (CMC) turbulent combustion model have been performed. The aim is to investigate the feasibility of the use of CMC/LES for ignition problems and to examine which, if any, of the characteristics already observed in related experiments could be predicted. A three-dimensional formulation of the CMC equation was used with simple and detailed chemical mechanisms, and sparks with different parameters (location, size) were used. It was found that the correct pattern of flame expansion and overall flame appearance were predicted with reasonablemore » accuracy with both mechanisms, but the detailed mechanism resulted in expansion rates closer to the experiment. Moreover, the distribution of OH was predicted qualitatively accurately, with patches of high and low concentration in the recirculation zone during the ignition transient, consistent with experimental data. The location of the spark relative to the recirculation zone was found to determine the pattern of the flame propagation and the total time for the flame stabilisation. The size was also an important parameter, since it was found that the flame extinguishes when the spark is very small, in agreement with expectations from experiment. The stabilisation mechanism of the flame was dominated by the convection and sub-grid scale diffusion of hot combustion products from the recirculation zone to the cold gases that enter the burner, as revealed by analysis of the CMC equation. (author)« less
  • A numerical study of soot formation in the near-field of a strongly radiating, nonpremixed, acetylene-air planar jet flame is conducted using Large Eddy Simulation in two dimensions to examine coupled turbulence, soot chemistry, and radiation effects. The two-dimensional, Favre-filtered, compressible Navier-Stokes, total sensible energy and mixture fraction equations are closed using the Smagorinsky subgrid-scale (SGS) turbulence model. Major species of gas-phase combustion are obtained using a laminar flamelet model by employing experimentally obtained laminar flame state relationships for the major species mass fractions as a function of gas-phase mixture fraction. A combination of a presumed Beta filtered density function andmore » a scale-similarity model are used to account for SGS mixture fraction and scalar dissipation fluctuations on the filtered composition and heat release rate. A soot transport and finite-rate kinetics model accounting for soot nucleation, surface growth, agglomeration, and oxidation is used. Radiation is modeled by integrating the filtered radiative transfer equation using the discrete ordinates method. Both instantaneous and time-averaged results are presented in order to highlight physical and numerical modeling issues and to examine turbulence, soot chemistry, and radiation interactions. Qualitative comparisons are made to precious numerical results and experimental data.« less
  • Premixed and nonpremixed flamelet-generated manifolds have been constructed and applied to large-eddy simulation of the piloted partially premixed turbulent flames Sandia Flame D and F. In both manifolds the chemistry is parameterized as a function of the mixture fraction and a progress variable. Compared to standard nonpremixed flamelets, premixed flamelets cover a much larger part of the reaction domain. Comparison of the results for the two manifolds with experimental data of flame D show that both manifolds yield predictions of comparable accuracy for the mean temperature, mixture fraction, and a number of chemical species, such as CO{sub 2}. However, themore » nonpremixed manifold outperforms the premixed manifold for other chemical species, the most notable being CO and H{sub 2}. If the mixture is rich, CO and H{sub 2} in a premixed flamelet are larger than in a nonpremixed flamelet, for a given value of the progress variable. Simulations have been performed for two different grids to address the effect of the large-eddy filter width. The inclusion of modeled subgrid variances of mixture fraction and progress variable as additional entries to the manifold have only small effects on the simulation of either flame. An exception is the prediction of NO, which (through an extra transport equation) was found to be much closer to experimental results when modeled subgrid variances were included. The results obtained for flame D are satisfactory, but despite the unsteadiness of the LES, the extinction measured in flame F is not properly captured. The latter finding suggests that the extinction in flame F mainly occurs on scales smaller than those resolved by the simulation. With the presumed {beta}-pdf approach, significant extinction does not occur, unless the scalar subgrid variances are overestimated. A thickened flame model, which maps unresolved small-scale dynamics upon resolved scales, is able to predict the experimentally observed extinction to some extent. (author)« less
  • The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Timemore » histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)« less