skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry

Abstract

Two complementary simulations of premixed turbulent flames are discussed. Low Reynolds number two-dimensional direct numerical simulation of a premixed turbulent V flame is first performed, to further analyze the behavior of various flame quantities and to study key ingredients of premixed turbulent combustion modeling. Flame surface density, subgrid-scale variance of progress variables, and unresolved turbulent fluxes are analyzed. These simulations include fully detailed chemistry from a flame-generated tabulation (FPI) and the analysis focuses on the dynamics of the thin flame front. Then, a novel subgrid scale closure for large eddy simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combines the flame surface density (FSD) approach with a presumed probability density function (PDF) of the progress variable that is used in FPI chemistry tabulation. The FSD is useful for introducing in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. This relation involves the conditional filtered average of the magnitude of the gradient of the progress variable. In the modeling, this conditional filtered mean is approximated from the filtered gradient of the progress variable of the FPI laminar flame. Balancemore » equations providing mean and variance of the progress variable together with the measure of the filtered gradient are used to presume the PDF. A three-dimensional larger Reynolds number flow configuration (ORACLES experiment) is then computed with FSD-PDF and the results are compared with measurements.« less

Authors:
; ; ;  [1]
  1. LMFN, UMR-CNRS-6614-CORIA, INSA de Rouen, Campus du Madrillet, Avenue de l'Universite, BP 8, 76801 Saint Etienne du Rouvray Cedex (France)
Publication Date:
OSTI Identifier:
20681470
Resource Type:
Journal Article
Resource Relation:
Journal Name: Combustion and Flame; Journal Volume: 143; Journal Issue: 4; Other Information: Elsevier Ltd. All rights reserved
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; FLAMES; TURBULENCE; TWO-DIMENSIONAL CALCULATIONS; COMPUTERIZED SIMULATION; COMBUSTION KINETICS

Citation Formats

Domingo, Pascale, Vervisch, Luc, Payet, Sandra, and Hauguel, Raphaeel. DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. United States: N. p., 2005. Web. doi:10.1016/j.combustflame.2005.08.023.
Domingo, Pascale, Vervisch, Luc, Payet, Sandra, & Hauguel, Raphaeel. DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. United States. doi:10.1016/j.combustflame.2005.08.023.
Domingo, Pascale, Vervisch, Luc, Payet, Sandra, and Hauguel, Raphaeel. Thu . "DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry". United States. doi:10.1016/j.combustflame.2005.08.023.
@article{osti_20681470,
title = {DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry},
author = {Domingo, Pascale and Vervisch, Luc and Payet, Sandra and Hauguel, Raphaeel},
abstractNote = {Two complementary simulations of premixed turbulent flames are discussed. Low Reynolds number two-dimensional direct numerical simulation of a premixed turbulent V flame is first performed, to further analyze the behavior of various flame quantities and to study key ingredients of premixed turbulent combustion modeling. Flame surface density, subgrid-scale variance of progress variables, and unresolved turbulent fluxes are analyzed. These simulations include fully detailed chemistry from a flame-generated tabulation (FPI) and the analysis focuses on the dynamics of the thin flame front. Then, a novel subgrid scale closure for large eddy simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combines the flame surface density (FSD) approach with a presumed probability density function (PDF) of the progress variable that is used in FPI chemistry tabulation. The FSD is useful for introducing in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. This relation involves the conditional filtered average of the magnitude of the gradient of the progress variable. In the modeling, this conditional filtered mean is approximated from the filtered gradient of the progress variable of the FPI laminar flame. Balance equations providing mean and variance of the progress variable together with the measure of the filtered gradient are used to presume the PDF. A three-dimensional larger Reynolds number flow configuration (ORACLES experiment) is then computed with FSD-PDF and the results are compared with measurements.},
doi = {10.1016/j.combustflame.2005.08.023},
journal = {Combustion and Flame},
number = 4,
volume = 143,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2005},
month = {Thu Dec 01 00:00:00 EST 2005}
}
  • The velocity-composition probability density function (pdf) model coupled with a k-{var{underscore}epsilon}-based mean flow computational fluid dynamics (CFD) model was used to describe the turbulent fluid flow, heat transfer, chemistry, and their interactions in a bluff-body, lean, premixed, methane-air combustor. Measured data including velocity, temperature, and chemical species concentrations were used to evaluate the model. The chemistry calculations were performed with an in situ look-up tabulation method. A reduced, 5-step chemical mechanism for describing fuel oxidation, CO, and NO chemistry was used in the model. NO formation from thermal, N{sub 2}O-intermediate, and prompt pathways was included in the 5-step mechanism. Anmore » axisymmetric, unstructured grid was used for solving the Eulerian, mean flow equations and the vertices were used to store mean statistics for solving the Lagrangian, fluid particle equations. Predicted velocity and composition mean statistics were compared to measurements in the bluff-body combustor for a lean equivalence ratio of 0.59. The predictions of major species matched measured and calculated equilibrium values in the recirculation zone. Comparisons of mean CO throughout the combustor were always within an order of magnitude and showed marked improvements over past predictions. Maximum discrepancies between measured and predicted NO concentration were between 5 and 7 ppm ({approximately}50%). The accessed composition space in this turbulent combustion simulation represented the values of species mole fraction and enthalpy for each fluid particle at each time step and was found to lie in a relatively small, uniquely shaped region that was dictated by the mixing, reaction, and heat transfer in the combustor. This accessed composition region was obtained in situ and required about 35 megabytes of storage once a steady state was reached.« less
  • Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgridmore » strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be implemented in numerical simulations of turbulent premixed combustion. (author)« less
  • Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results withmore » available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)« less
  • Correctly reproducing the autoignition and the chemical composition of partially premixed turbulent flames is a challenge for numerical simulations of industrial applications such as diesel engines. A new model DF-PCM (diffusion flame presumed conditional moment) is proposed based on a coupling between the FPI (flame prolongation of ILDM) tabulation method and the PCM (presumed conditional moment) approach. Because the flamelets used to build the table are laminar diffusion flames, DF-PCM cannot be used for industrial applications like Diesel engines due to excessive CPU requirements. Therefore two new models called AI-PCM (autoignition presumed conditional moment) and ADF-PCM (approximated diffusion flames presumedmore » conditional moment) are developed to approximate it. These models differ from DF-PCM because the flamelet libraries used for the table rely on PSR calculations. Comparisons between DF-PCM, AI-PCM, and ADF-PCM are performed for two fuels, n-heptane, representative of diesel fuels, and methane, which does not exhibit a ''cool flame'' ignition regime. These comparisons show that laminar diffusion flames can be approximated by flamelets based on PSR calculations in terms of autoignition delays and steady state profiles of the progress variable. Moreover, the evolution of the mean progress variable of DF-PCM can be correctly estimated by the approximated models. However, as discussed in this paper, errors are larger for CO and CO{sub 2} mass fractions evolutions. Finally, an improvement to ADF-PCM, taking into account ignition delays, is proposed to better reproduce the ignition of very rich mixtures. (author)« less
  • Cited by 5