skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [1];  [1];  [1];  [1]
  1. Program in Toxicology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important role in arsenic-induced skin carcinogenesis.

OSTI ID:
20634820
Journal Information:
Toxicology and Applied Pharmacology, Vol. 200, Issue 3; Other Information: DOI: 10.1016/j.taap.2004.04.023; PII: S0041-008X(04)00223-6; Copyright (c) 2004 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English