skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An update on subsea multiphase pumping

Abstract

Agip SpA anticipates that subsea multiphase production, based on long-distance transportation of untreated oilwell fluids--namely, oil, water, and gas, will be an efficient tool for the exploitation of deepwater and marginal fields. In 1990, at the Trecate onshore oil field, Agip completed long-term testing of a multiphase screw pump, which confirmed commercial surface applications. Agip then integrated a subsea version of an improved multiphase twin-screw pump into a subsea multiphase boosting unit that was installed at the Prezioso field, offshore Sicily, in 1994 That was the first subsea installation of an electrically driven multi-phase pump operating with live oil. Agip began endurance testing of the pumping system in January 1995 and by last November, the cumulated period of running reached 3,500 hours with no evidence of pump-capacity reduction. Testing focused on boosting at high gas-void fraction and oil viscosity, operation at variable motor speed for pump control, pump control by means of throttling valves, direct interaction of the pumping system with both wells and the multiphase export line, variation of the lube-oil pressure across seals and bearings, and the evaluation of any degradation effect on the pump flow capacity over time. This paper reviews the design and performance of thismore » pump and applicability to other offshore projects.« less

Authors:
;
Publication Date:
OSTI Identifier:
205533
Resource Type:
Journal Article
Resource Relation:
Journal Name: JPT, Journal of Petroleum Technology; Journal Volume: 48; Journal Issue: 2; Other Information: PBD: Feb 1996
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; 03 NATURAL GAS; PUMPS; DESIGN; PERFORMANCE; OIL WELLS; MULTIPHASE FLOW; NATURAL GAS WELLS; SICILY; OFFSHORE OPERATIONS; OPERATION

Citation Formats

Colombi, P., and De Donno, S.. An update on subsea multiphase pumping. United States: N. p., 1996. Web.
Colombi, P., & De Donno, S.. An update on subsea multiphase pumping. United States.
Colombi, P., and De Donno, S.. Thu . "An update on subsea multiphase pumping". United States. doi:.
@article{osti_205533,
title = {An update on subsea multiphase pumping},
author = {Colombi, P. and De Donno, S.},
abstractNote = {Agip SpA anticipates that subsea multiphase production, based on long-distance transportation of untreated oilwell fluids--namely, oil, water, and gas, will be an efficient tool for the exploitation of deepwater and marginal fields. In 1990, at the Trecate onshore oil field, Agip completed long-term testing of a multiphase screw pump, which confirmed commercial surface applications. Agip then integrated a subsea version of an improved multiphase twin-screw pump into a subsea multiphase boosting unit that was installed at the Prezioso field, offshore Sicily, in 1994 That was the first subsea installation of an electrically driven multi-phase pump operating with live oil. Agip began endurance testing of the pumping system in January 1995 and by last November, the cumulated period of running reached 3,500 hours with no evidence of pump-capacity reduction. Testing focused on boosting at high gas-void fraction and oil viscosity, operation at variable motor speed for pump control, pump control by means of throttling valves, direct interaction of the pumping system with both wells and the multiphase export line, variation of the lube-oil pressure across seals and bearings, and the evaluation of any degradation effect on the pump flow capacity over time. This paper reviews the design and performance of this pump and applicability to other offshore projects.},
doi = {},
journal = {JPT, Journal of Petroleum Technology},
number = 2,
volume = 48,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 1996},
month = {Thu Feb 01 00:00:00 EST 1996}
}
  • Satellite subsea production systems are attractive as a low-cost approach to field development, particularly for so-called marginal fields in deepwater areas. Development of such fields may be uneconomical, however, if the natural wellhead flowing pressure is too low. This paper presents an update on the state of subsea multiphase-pumping-system technology. The potential production benefits of subsea pressure-boosting systems.
  • Since 1995, Petrobras and Westinghouse have been working on a development effort that has resulted in a technological cooperation agreement between the companies and, more importantly, the development of a conceptual design for a subsea multiphase-flow pumping system. SBMS-500 [500-m{sup 3}/hr total flow rate, up to 6,000 KPa of pressure increase, up to 95% gas-void fraction (GVF) at the suction, and approximately 1.2 MW of power on the shaft], adequate for deepwater guidelineless operations. In 1992, having discovered fields in water depths greater than the original 1,000-m limit. Petrobras created a new program named Procap-2000 (technological-innovation program for deepwater exploitationmore » systems). Among the innovative technological endeavors that Procap comprises are the boosting projects, namely the electrical submersible downhole pump in subsea wells; a subsea liquid-separation system; and a subsea multiphase-flow pumping system (SMFPS). Major characteristics and plans for field testing are described.« less
  • A NOVEL SUBSEA multistage positive displacement pump driven by hydraulic turbines powered with seawater from surface producing facilities is being developed by Weir Pumps Ltd., of Glasgow, Scotland. The project is being supported by 16 oil industry sponsors and the UK Department of Energy. The pump is being designed to handle hot multiphase (gas-oil-water) well streams containing sands, solids, etc. This article discusses application of such a pump, design considerations and optional drives and power supplies.
  • The Rogn South subsea well has the world`s first commercial subsea multiphase boosting system. The well produces to A/S Norske Shell`s Draugen field, in the Norwegian Sea. The Smubs (Shell multiphase underwater booster station) provides additional energy to transport a mixture of gas and liquids over long distances. This reduces the back pressure on the reservoir to potentially enhance both production and recovery. In-house Shell International Petroleum Maatschappij B.V. (SIPM) has studied estimated facility costs and performance for a multiphase boosting system for a typical small (50 million bbl) field between 20--50 km from a host facility in water depthsmore » between 150--1,000 m. The studies showed that technical costs per barrel of oil produced could be cut by up to 30% compared to conventional technology. The Smubs main features are: A single retrievable cartridge that houses all active components susceptible to wear; No orientation requirements for the pump cartridge unit; No orientation requirements for the pump cartridge unit; Hydraulically set and tested seals; and Vertical installation and retrieval with a single tool, and a remotely operated vehicle (ROV) only for a monitoring.« less
  • Subsea production systems have successfully demonstrated their overall reliability, and have established a proven track record over the past 30 years of field experience. Current trends in their configuration from large, heavy, multiwell integrated drilling template and production/injection manifold systems to small, light-weight, {open_quotes}mini template{close_quotes} systems or clustered well manifolds with individual satellite wells-essentially a cost reduction trend-are expected to continue throughout the remainder of the decade. System configuration and equipment technology trends in the 1990s are now improving the profitability and capability of subsea production systems.