# Convergence of the expansion of the renormalization group flow equation

## Abstract

We compare and discuss the dependence of a polynomial truncation of the effective potential used to solve an exact renormalization group flow equation for a model with a fermionic interaction (linear sigma model) with a grid solution. The sensitivity of the results to the underlying cutoff function is discussed. We explore the validity of the expansion method for second- and first-order phase transitions. (c) 2000 The American Physical Society.

- Authors:

- Institut fuer Theoretische Physik der Universitaet Heidelberg, D-69120 Heidelberg, (Germany)
- (United States)
- Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt, (Germany)
- (Germany)

- Publication Date:

- OSTI Identifier:
- 20216166

- Resource Type:
- Journal Article

- Journal Name:
- Physical Review. D, Particles Fields

- Additional Journal Information:
- Journal Volume: 61; Journal Issue: 9; Other Information: PBD: 1 May 2000; Journal ID: ISSN 0556-2821

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; LAGRANGIAN FIELD THEORY; RENORMALIZATION; POLYNOMIALS; DIAGRAMS; CRITICAL TEMPERATURE; PARTITION FUNCTIONS; QUARK MODEL; THEORETICAL DATA

### Citation Formats

```
Papp, G., CNR, Department of Physics, Kent State University, Ohio 44242, Schaefer, B.-J., Pirner, H.-J., Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg,, and Wambach, J.
```*Convergence of the expansion of the renormalization group flow equation*. United States: N. p., 2000.
Web. doi:10.1103/PhysRevD.61.096002.

```
Papp, G., CNR, Department of Physics, Kent State University, Ohio 44242, Schaefer, B.-J., Pirner, H.-J., Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg,, & Wambach, J.
```*Convergence of the expansion of the renormalization group flow equation*. United States. doi:10.1103/PhysRevD.61.096002.

```
Papp, G., CNR, Department of Physics, Kent State University, Ohio 44242, Schaefer, B.-J., Pirner, H.-J., Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg,, and Wambach, J. Mon .
"Convergence of the expansion of the renormalization group flow equation". United States. doi:10.1103/PhysRevD.61.096002.
```

```
@article{osti_20216166,
```

title = {Convergence of the expansion of the renormalization group flow equation},

author = {Papp, G. and CNR, Department of Physics, Kent State University, Ohio 44242 and Schaefer, B.-J. and Pirner, H.-J. and Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg, and Wambach, J.},

abstractNote = {We compare and discuss the dependence of a polynomial truncation of the effective potential used to solve an exact renormalization group flow equation for a model with a fermionic interaction (linear sigma model) with a grid solution. The sensitivity of the results to the underlying cutoff function is discussed. We explore the validity of the expansion method for second- and first-order phase transitions. (c) 2000 The American Physical Society.},

doi = {10.1103/PhysRevD.61.096002},

journal = {Physical Review. D, Particles Fields},

issn = {0556-2821},

number = 9,

volume = 61,

place = {United States},

year = {2000},

month = {5}

}

Other availability

Save to My Library

You must Sign In or Create an Account in order to save documents to your library.