skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Convergence of the expansion of the renormalization group flow equation

Abstract

We compare and discuss the dependence of a polynomial truncation of the effective potential used to solve an exact renormalization group flow equation for a model with a fermionic interaction (linear sigma model) with a grid solution. The sensitivity of the results to the underlying cutoff function is discussed. We explore the validity of the expansion method for second- and first-order phase transitions. (c) 2000 The American Physical Society.

Authors:
 [1];  [2];  [3];  [1];  [4];  [3]
  1. Institut fuer Theoretische Physik der Universitaet Heidelberg, D-69120 Heidelberg, (Germany)
  2. (United States)
  3. Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt, (Germany)
  4. (Germany)
Publication Date:
OSTI Identifier:
20216166
Resource Type:
Journal Article
Journal Name:
Physical Review. D, Particles Fields
Additional Journal Information:
Journal Volume: 61; Journal Issue: 9; Other Information: PBD: 1 May 2000; Journal ID: ISSN 0556-2821
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; LAGRANGIAN FIELD THEORY; RENORMALIZATION; POLYNOMIALS; DIAGRAMS; CRITICAL TEMPERATURE; PARTITION FUNCTIONS; QUARK MODEL; THEORETICAL DATA

Citation Formats

Papp, G., CNR, Department of Physics, Kent State University, Ohio 44242, Schaefer, B.-J., Pirner, H.-J., Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg,, and Wambach, J. Convergence of the expansion of the renormalization group flow equation. United States: N. p., 2000. Web. doi:10.1103/PhysRevD.61.096002.
Papp, G., CNR, Department of Physics, Kent State University, Ohio 44242, Schaefer, B.-J., Pirner, H.-J., Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg,, & Wambach, J. Convergence of the expansion of the renormalization group flow equation. United States. doi:10.1103/PhysRevD.61.096002.
Papp, G., CNR, Department of Physics, Kent State University, Ohio 44242, Schaefer, B.-J., Pirner, H.-J., Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg,, and Wambach, J. Mon . "Convergence of the expansion of the renormalization group flow equation". United States. doi:10.1103/PhysRevD.61.096002.
@article{osti_20216166,
title = {Convergence of the expansion of the renormalization group flow equation},
author = {Papp, G. and CNR, Department of Physics, Kent State University, Ohio 44242 and Schaefer, B.-J. and Pirner, H.-J. and Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg, and Wambach, J.},
abstractNote = {We compare and discuss the dependence of a polynomial truncation of the effective potential used to solve an exact renormalization group flow equation for a model with a fermionic interaction (linear sigma model) with a grid solution. The sensitivity of the results to the underlying cutoff function is discussed. We explore the validity of the expansion method for second- and first-order phase transitions. (c) 2000 The American Physical Society.},
doi = {10.1103/PhysRevD.61.096002},
journal = {Physical Review. D, Particles Fields},
issn = {0556-2821},
number = 9,
volume = 61,
place = {United States},
year = {2000},
month = {5}
}