skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shape-selective catalysis in dimethyl ether conversion

Abstract

Coal-derived syngas can be effectively converted to dimethyl ether (DME) in a single-stage, liquid-phase process. This Liquid Phase Dimethyl Ether (LPDME) process utilizes a dual catalytic system, which comprises of a physical blend between the methanol synthesis and the methanol dehydration catalyst slurried in an inert mineral oil. Such produced DME has vast potential as a building block chemical in the petrochemical industry to produce value-added specialty chemicals. The current research efforts are made to exploit the utilization of shape-selective catalysis using zeolites to produce targeted petrochemicals, including lower olefinic hydrocarbons. The catalysts probed in this investigation include zeolites of different physical, morphological, and chemical configurations. The effect of acidity of ZSM-5 type zeolites as well as the effect of the different channel size and orientation of the zeolites on product selectivity and catalyst deactivation are examined. Results obtained from experimentation of this study show that ZSM-5 type zeolite with low acidity (high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, in this case 150) exhibits the highest selectivity towards lower (C{sub 2}-C{sub 4}) olefins in general. Controlled selectivity toward targeted olefinic species can be accomplished via devising catalytic reaction systems in such a way that the structural property of the catalyst andmore » reactive interaction between molecules in the pores are geared toward formation of targeted molecular species which also at the same time prevent the formation of less desirable products. The internal morphology of the catalyst also has a pronounced effect on the deactivation phenomenon, where it is observed that zeolites possessing high acidity and a unidimensional channel structure are prone towards catalyst deactivation by coking and pore blockage.« less

Authors:
;
Publication Date:
Research Org.:
The Univ. of Missouri-Columbia, MO (US)
OSTI Identifier:
20082225
Resource Type:
Conference
Resource Relation:
Conference: Sixteenth Annual International Pittsburgh Coal Conference, Pittsburgh, PA (US), 10/11/1999--10/15/1999; Other Information: 1 CD-ROM. Operating systems required: Windows 95/98; Windows 3.X, Macintosh; PBD: 1999; Related Information: In: Sixteenth annual international Pittsburgh Coal Conference: Proceedings, [2000] pages.
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 10 SYNTHETIC FUELS; 36 MATERIALS SCIENCE; SYNTHESIS GAS; CONVERSION; ETHERS; CATALYSTS; ZEOLITES; PERFORMANCE TESTING; PORE STRUCTURE; CATALYTIC EFFECTS; PH VALUE; DEACTIVATION

Citation Formats

Sardesai, A., and Lee, S. Shape-selective catalysis in dimethyl ether conversion. United States: N. p., 1999. Web.
Sardesai, A., & Lee, S. Shape-selective catalysis in dimethyl ether conversion. United States.
Sardesai, A., and Lee, S. Thu . "Shape-selective catalysis in dimethyl ether conversion". United States.
@article{osti_20082225,
title = {Shape-selective catalysis in dimethyl ether conversion},
author = {Sardesai, A. and Lee, S.},
abstractNote = {Coal-derived syngas can be effectively converted to dimethyl ether (DME) in a single-stage, liquid-phase process. This Liquid Phase Dimethyl Ether (LPDME) process utilizes a dual catalytic system, which comprises of a physical blend between the methanol synthesis and the methanol dehydration catalyst slurried in an inert mineral oil. Such produced DME has vast potential as a building block chemical in the petrochemical industry to produce value-added specialty chemicals. The current research efforts are made to exploit the utilization of shape-selective catalysis using zeolites to produce targeted petrochemicals, including lower olefinic hydrocarbons. The catalysts probed in this investigation include zeolites of different physical, morphological, and chemical configurations. The effect of acidity of ZSM-5 type zeolites as well as the effect of the different channel size and orientation of the zeolites on product selectivity and catalyst deactivation are examined. Results obtained from experimentation of this study show that ZSM-5 type zeolite with low acidity (high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, in this case 150) exhibits the highest selectivity towards lower (C{sub 2}-C{sub 4}) olefins in general. Controlled selectivity toward targeted olefinic species can be accomplished via devising catalytic reaction systems in such a way that the structural property of the catalyst and reactive interaction between molecules in the pores are geared toward formation of targeted molecular species which also at the same time prevent the formation of less desirable products. The internal morphology of the catalyst also has a pronounced effect on the deactivation phenomenon, where it is observed that zeolites possessing high acidity and a unidimensional channel structure are prone towards catalyst deactivation by coking and pore blockage.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {1999},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: