skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Treatment of chlorinated solvents by nitrogen-fixing and nitrate-supplied methane oxidizers in columns packed with unsaturated porous media

Abstract

This study compares the feasibility of employing nitrogen-fixing and nitrate-supplied methane-oxidizing cultures grown in unsaturated porous media to degrade cis-1,2-dichloroethylene (cDCE) and trichloroethylene (TCE) in gas streams. Both nitrate-supplied and nitrogen-fixing columns degraded TCE completely at a gaseous concentration of 0.7 mg/L for 8--10 days. However, when columns were supplied with 4% CH{sub 4} and 10% O{sub 2}, nitrate-supplied columns were not able to recover after degrading TCE at a gaseous concentration of 0.13 mg/L for 7 days. In contrast, nitrogen-fixing columns recovered after degrading 0.13--0.4 mg/L TCE for 3--10 days and were capable of repeatedly degrading TCE at gaseous concentrations of 0.03--0.14 mg/L TCE for 3--10 days and were capable of repeatedly degrading TCE at gaseous concentrations of 0.03--0.14 mg/L during long-term intermittent operation that was punctuated by appropriate microbial recovery periods. Both nitrate-supplied and nitrogen-fixing columns were capable of degrading cDCE at concentrations of 0.7--1.0 mg/L for 5--10 days, but only the nitrogen-fixing columns recovered from cDCE exposure. The operating period for columns treating a mixture of TCE and cDCE was significantly shorter than that for treatment of TCE or cDCE alone. Several operating curves were developed to facilitate comparisons between operating conditions and to aid in predictingmore » chlorinated solvent removals in such systems. Nitrogen-fixing columns consistently outperformed nitrate-supplied columns, and columns inoculated with a mixed culture outperformed those inoculated with Methylosinus trichosporium OB3b for TCE removal but not for cDCE removal.« less

Authors:
;
Publication Date:
Research Org.:
Univ. of California, Berkeley, CA (US)
OSTI Identifier:
20080521
Resource Type:
Journal Article
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 34; Journal Issue: 9; Other Information: PBD: 1 May 2000; Journal ID: ISSN 0013-936X
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; SOILS; GROUND WATER; REMEDIAL ACTION; CHLORINATED ALIPHATIC HYDROCARBONS; BIODEGRADATION; NITRATES; NITROGEN FIXATION; METHANOTROPHIC BACTERIA

Citation Formats

Chu, K.H., and Alvarez-Cohen, L. Treatment of chlorinated solvents by nitrogen-fixing and nitrate-supplied methane oxidizers in columns packed with unsaturated porous media. United States: N. p., 2000. Web. doi:10.1021/es9907717.
Chu, K.H., & Alvarez-Cohen, L. Treatment of chlorinated solvents by nitrogen-fixing and nitrate-supplied methane oxidizers in columns packed with unsaturated porous media. United States. doi:10.1021/es9907717.
Chu, K.H., and Alvarez-Cohen, L. Mon . "Treatment of chlorinated solvents by nitrogen-fixing and nitrate-supplied methane oxidizers in columns packed with unsaturated porous media". United States. doi:10.1021/es9907717.
@article{osti_20080521,
title = {Treatment of chlorinated solvents by nitrogen-fixing and nitrate-supplied methane oxidizers in columns packed with unsaturated porous media},
author = {Chu, K.H. and Alvarez-Cohen, L.},
abstractNote = {This study compares the feasibility of employing nitrogen-fixing and nitrate-supplied methane-oxidizing cultures grown in unsaturated porous media to degrade cis-1,2-dichloroethylene (cDCE) and trichloroethylene (TCE) in gas streams. Both nitrate-supplied and nitrogen-fixing columns degraded TCE completely at a gaseous concentration of 0.7 mg/L for 8--10 days. However, when columns were supplied with 4% CH{sub 4} and 10% O{sub 2}, nitrate-supplied columns were not able to recover after degrading TCE at a gaseous concentration of 0.13 mg/L for 7 days. In contrast, nitrogen-fixing columns recovered after degrading 0.13--0.4 mg/L TCE for 3--10 days and were capable of repeatedly degrading TCE at gaseous concentrations of 0.03--0.14 mg/L TCE for 3--10 days and were capable of repeatedly degrading TCE at gaseous concentrations of 0.03--0.14 mg/L during long-term intermittent operation that was punctuated by appropriate microbial recovery periods. Both nitrate-supplied and nitrogen-fixing columns were capable of degrading cDCE at concentrations of 0.7--1.0 mg/L for 5--10 days, but only the nitrogen-fixing columns recovered from cDCE exposure. The operating period for columns treating a mixture of TCE and cDCE was significantly shorter than that for treatment of TCE or cDCE alone. Several operating curves were developed to facilitate comparisons between operating conditions and to aid in predicting chlorinated solvent removals in such systems. Nitrogen-fixing columns consistently outperformed nitrate-supplied columns, and columns inoculated with a mixed culture outperformed those inoculated with Methylosinus trichosporium OB3b for TCE removal but not for cDCE removal.},
doi = {10.1021/es9907717},
journal = {Environmental Science and Technology},
issn = {0013-936X},
number = 9,
volume = 34,
place = {United States},
year = {2000},
month = {5}
}