skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of nitrate on uptake of pertechnetate by tomato plants

Abstract

Nitrate has been shown to affect the acquisition of the nuclear waste product technetium (Tc) by plants. The mechanism responsible for this phenomenon is unknown. The uptake of [{sup 99m}Tc]TcO{sub 4}{sup {minus}},[{sup 35}S] SO{sub 4}{sup 2{minus}} and H{sub 2}[{sup 32P}]PO{sub 4}{sup {minus}} was studied in tomato plants (Lycopersicon esculentum Mill., cv. Tiny Tim) with different growth rates due to culture at 0.5, 4.0, or 30 mM NO{sub 3}{sup {minus}}. In experiments lasting 24 h, net TcO{sub 4}{sup {minus}} uptake decreased at higher NO{sub 3}{sup {minus}} supplies. The inhibitory effect of NO{sub 3}{sup {minus}} on TcO{sub 4}{sup {minus}} uptake also was shown in TcO{sub 4}{sup {minus}} influx experiments (K{sub i} = 3.3 mM), although about 30% of the TcO{sub 4}{sup {minus}} influx is suggested to be insensitive to NO{sub 3}{sup {minus}}. In contrast, H{sub 2}PO{sub 4}{sup {minus}} (30 mM) did not inhibit TcO{sub 4}{sup {minus}} influx, whereas SO{sub 4}{sup 2{minus}} (30 mM) tended to increase TcO{sub 4}{sup {minus}} influx, probably due to the ionic strength of the uptake solution. Significant effects of the NO{sub 3}{sup {minus}} supply on Tc efflux were not found. Overall, this leads to the conclusion that TcO{sub 4}{sup {minus}} and NO{sub 3}{sup {minus}} share at least onemore » transporter.« less

Authors:
; ;
Publication Date:
Research Org.:
Delft Univ. of Technology (NL)
OSTI Identifier:
20080429
Resource Type:
Journal Article
Journal Name:
Journal of Environmental Quality
Additional Journal Information:
Journal Volume: 29; Journal Issue: 3; Other Information: PBD: May-Jun 2000; Journal ID: ISSN 0047-2425
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; NITRATES; SOILS; PERTECHNETATES; BIOLOGICAL ACCUMULATION; TOMATOES; SOIL CHEMISTRY

Citation Formats

Krijger, G.C., Kolloeffel, C., and Wolterbeek, H.T. Effect of nitrate on uptake of pertechnetate by tomato plants. United States: N. p., 2000. Web. doi:10.2134/jeq2000.00472425002900030023x.
Krijger, G.C., Kolloeffel, C., & Wolterbeek, H.T. Effect of nitrate on uptake of pertechnetate by tomato plants. United States. doi:10.2134/jeq2000.00472425002900030023x.
Krijger, G.C., Kolloeffel, C., and Wolterbeek, H.T. Thu . "Effect of nitrate on uptake of pertechnetate by tomato plants". United States. doi:10.2134/jeq2000.00472425002900030023x.
@article{osti_20080429,
title = {Effect of nitrate on uptake of pertechnetate by tomato plants},
author = {Krijger, G.C. and Kolloeffel, C. and Wolterbeek, H.T.},
abstractNote = {Nitrate has been shown to affect the acquisition of the nuclear waste product technetium (Tc) by plants. The mechanism responsible for this phenomenon is unknown. The uptake of [{sup 99m}Tc]TcO{sub 4}{sup {minus}},[{sup 35}S] SO{sub 4}{sup 2{minus}} and H{sub 2}[{sup 32P}]PO{sub 4}{sup {minus}} was studied in tomato plants (Lycopersicon esculentum Mill., cv. Tiny Tim) with different growth rates due to culture at 0.5, 4.0, or 30 mM NO{sub 3}{sup {minus}}. In experiments lasting 24 h, net TcO{sub 4}{sup {minus}} uptake decreased at higher NO{sub 3}{sup {minus}} supplies. The inhibitory effect of NO{sub 3}{sup {minus}} on TcO{sub 4}{sup {minus}} uptake also was shown in TcO{sub 4}{sup {minus}} influx experiments (K{sub i} = 3.3 mM), although about 30% of the TcO{sub 4}{sup {minus}} influx is suggested to be insensitive to NO{sub 3}{sup {minus}}. In contrast, H{sub 2}PO{sub 4}{sup {minus}} (30 mM) did not inhibit TcO{sub 4}{sup {minus}} influx, whereas SO{sub 4}{sup 2{minus}} (30 mM) tended to increase TcO{sub 4}{sup {minus}} influx, probably due to the ionic strength of the uptake solution. Significant effects of the NO{sub 3}{sup {minus}} supply on Tc efflux were not found. Overall, this leads to the conclusion that TcO{sub 4}{sup {minus}} and NO{sub 3}{sup {minus}} share at least one transporter.},
doi = {10.2134/jeq2000.00472425002900030023x},
journal = {Journal of Environmental Quality},
issn = {0047-2425},
number = 3,
volume = 29,
place = {United States},
year = {2000},
month = {6}
}