skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal chemical aspects of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VO{sub n}) polyhedra

Abstract

The distribution of bond lengths in (V{sup 3+}O{sub 6}) polyhedra shows a maximum between 1.98 and 2.04 {angstrom}, and limits of 1.88 and 2.16 {angstrom}, respectively. The bond lengths in (V{sup 4+}O{sub n}) and (V{sup 5+}O{sub n}) (n = 5,6) polyhedra show distinct populations which allow us to define the following types of bonds: (1a) vanadyl bonds in (V{sup 4+}O{sub n}) polyhedra, shorter than 1.74 {angstrom}; (1b) vanadyl bonds in (V{sup 5+}O{sub 5}) polyhedra, shorter than 1.76 {angstrom}; (1c) vanadyl bonds in (V{sup 5+}O{sub 6}) polyhedra, shorter than 1.74 {angstrom}; (2a) equatorial bonds in (V{sup 4+}O{sub n}) polyhedra, in the range 1.90 to 2.12 {angstrom}; (2b) equatorial bonds in (V{sup 5+}O{sub 5}) polyhedra, longer than 1.76 {angstrom}; (2c) equatorial bonds in (V{sup 5+}O{sub 6}) polyhedra with one vanadyl bond, in the range 1.74 to 2.10 {angstrom}; (2d) equatorial bonds in (V{sup 5+}O{sub 6}) polyhedra with two vanadyl bonds, in the range 1.80 to 2.00 {angstrom}; (3a) trans bonds in (V{sup 4+}O{sub 6}) polyhedra, longer than 2.10 {angstrom}; (3b) trans bonds in (V{sup 5+}O{sub 6}) polyhedra with two vanadyl bonds, longer than 2.025 {angstrom}. The average equatorial bond length in (V{sup 4+}O{sub n}) and (V{sup 5+}O{sub n}) polyhedra can be usedmore » to calculate the mean valence state of V in mixed-valent structures. The authors define characteristic bond valences for vanadyl, equatorial, and trans bonds in different coordinations and examine which binary linkages are possible and which linkages occur in minerals and synthetic compounds. Here, V{sup 5+}-O-V{sup 5+}, V{sup 5+}-O-V{sup 4+}, and V{sup 4+}-O-V{sup 4+} linkages between vanadyl-trans and equatorial-equatorial bonds occur often in synthetic compounds, whereas the corresponding V{sup 4+}-O-V{sup 4+} linkages are rare in minerals.« less

Authors:
; ;
Publication Date:
Research Org.:
Univ. of Manitoba, Winnipeg, Manitoba (CA)
OSTI Identifier:
20080263
Resource Type:
Journal Article
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 12; Journal Issue: 5; Other Information: PBD: May 2000; Journal ID: ISSN 0897-4756
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; VANADIUM OXIDES; CATALYSTS; CRYSTAL STRUCTURE; CHEMICAL BONDS

Citation Formats

Schindler, M., Hawthorne, F.C., and Baur, W.H. Crystal chemical aspects of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VO{sub n}) polyhedra. United States: N. p., 2000. Web. doi:10.1021/cm990490y.
Schindler, M., Hawthorne, F.C., & Baur, W.H. Crystal chemical aspects of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VO{sub n}) polyhedra. United States. doi:10.1021/cm990490y.
Schindler, M., Hawthorne, F.C., and Baur, W.H. Mon . "Crystal chemical aspects of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VO{sub n}) polyhedra". United States. doi:10.1021/cm990490y.
@article{osti_20080263,
title = {Crystal chemical aspects of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VO{sub n}) polyhedra},
author = {Schindler, M. and Hawthorne, F.C. and Baur, W.H.},
abstractNote = {The distribution of bond lengths in (V{sup 3+}O{sub 6}) polyhedra shows a maximum between 1.98 and 2.04 {angstrom}, and limits of 1.88 and 2.16 {angstrom}, respectively. The bond lengths in (V{sup 4+}O{sub n}) and (V{sup 5+}O{sub n}) (n = 5,6) polyhedra show distinct populations which allow us to define the following types of bonds: (1a) vanadyl bonds in (V{sup 4+}O{sub n}) polyhedra, shorter than 1.74 {angstrom}; (1b) vanadyl bonds in (V{sup 5+}O{sub 5}) polyhedra, shorter than 1.76 {angstrom}; (1c) vanadyl bonds in (V{sup 5+}O{sub 6}) polyhedra, shorter than 1.74 {angstrom}; (2a) equatorial bonds in (V{sup 4+}O{sub n}) polyhedra, in the range 1.90 to 2.12 {angstrom}; (2b) equatorial bonds in (V{sup 5+}O{sub 5}) polyhedra, longer than 1.76 {angstrom}; (2c) equatorial bonds in (V{sup 5+}O{sub 6}) polyhedra with one vanadyl bond, in the range 1.74 to 2.10 {angstrom}; (2d) equatorial bonds in (V{sup 5+}O{sub 6}) polyhedra with two vanadyl bonds, in the range 1.80 to 2.00 {angstrom}; (3a) trans bonds in (V{sup 4+}O{sub 6}) polyhedra, longer than 2.10 {angstrom}; (3b) trans bonds in (V{sup 5+}O{sub 6}) polyhedra with two vanadyl bonds, longer than 2.025 {angstrom}. The average equatorial bond length in (V{sup 4+}O{sub n}) and (V{sup 5+}O{sub n}) polyhedra can be used to calculate the mean valence state of V in mixed-valent structures. The authors define characteristic bond valences for vanadyl, equatorial, and trans bonds in different coordinations and examine which binary linkages are possible and which linkages occur in minerals and synthetic compounds. Here, V{sup 5+}-O-V{sup 5+}, V{sup 5+}-O-V{sup 4+}, and V{sup 4+}-O-V{sup 4+} linkages between vanadyl-trans and equatorial-equatorial bonds occur often in synthetic compounds, whereas the corresponding V{sup 4+}-O-V{sup 4+} linkages are rare in minerals.},
doi = {10.1021/cm990490y},
journal = {Chemistry of Materials},
issn = {0897-4756},
number = 5,
volume = 12,
place = {United States},
year = {2000},
month = {5}
}