skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys -- 2. Microstructural length scales

Abstract

Experimental results are presented of solidification microstructure length scale including {eta}-phase cell spacing, primary {epsilon} secondary dendrite arm spacing, size of nonaligned dendrite of primary {epsilon}, and volume fraction of primary {epsilon}, as functions of alloy concentration (containing up to 7.37 wt% Cu) and growth velocity (ranging from 0.02 to 4.82 mm/s) in the unidirectional solidification of Zn-rich Zn-Cu peritectic alloys. Intercellular spacing ({lambda}) of two-phase cellular structure decreases with increasing growth velocity (V) such that {lambda}V{sup 1/2} is constant at a fixed alloy concentration in parametric agreement with the KGT and Hunt-Lu models. The value of {lambda}V{sup 1/2} varies from 216 {+-} 10 to 316 {+-} 55 {micro}m{sup 3/2}/s{sup 1/2} with decrease in alloy concentration from 4.94 to 2.17 wt% Cu. These values are much greater than for normal eutectic systems but comparable with monotectic alloys. Dendritic secondary arm spacing ({lambda}{sub 2}) of primary {epsilon} decreases with increasing V such that {lambda}{sub 2}V{sup 1/3} is constant ranging 14.9 {+-} 0.9 to 75.6 {+-} 8.1 {micro}m{sup 4/3}/s{sup 1/3} with increase in alloy concentration (C{sub 0}) from 2.17 to 7.37 wt% Cu, which is in parametric agreement with predictions of arm-coarsening theory. The volume fraction (f{sub e}) of primary {epsilon} increasesmore » with increasing V for Zn-rich Zn-3.37, 4.94 and 7.37 wt% Cu hyperperitectic alloys. Predictions of the Scheil and Sarreal-Abbaschian models show good agreement with the observed f{sub {epsilon}} for Zn-4.94 wt% Cu at moderate V from 0.19 to 2.64 mm/s, but fail at low V of less than 0.16 mm/s and at high V of greater than 3.54 mm/s. The measured average size, {Lambda}V{sup 1/2} is constant for a given alloy, increasing from (0.98 {+-} 0.04) x 10{sup 3} to (7.2 {+-} 0.7) x 10{sup 3} {micro}m{sup 3/2}/s{sup 1/2} with increase in alloy concentration from 2.17 to 4.94 wt% Cu.« less

Authors:
; ; ;
Publication Date:
Research Org.:
National Univ. of Singapore (SG)
OSTI Identifier:
20075930
Resource Type:
Journal Article
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 48; Journal Issue: 8; Other Information: PBD: 11 May 2000; Journal ID: ISSN 1359-6454
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; SOLIDIFICATION; MICROSTRUCTURE; ZINC ALLOYS; COPPER ALLOYS; LIQUID METALS; DENDRITES; MATHEMATICAL MODELS; CORRELATIONS

Citation Formats

Ma, D., Li, Y., Ng, S.C., and Jones, H. Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys -- 2. Microstructural length scales. United States: N. p., 2000. Web. doi:10.1016/S1359-6454(00)00003-3.
Ma, D., Li, Y., Ng, S.C., & Jones, H. Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys -- 2. Microstructural length scales. United States. doi:10.1016/S1359-6454(00)00003-3.
Ma, D., Li, Y., Ng, S.C., and Jones, H. Thu . "Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys -- 2. Microstructural length scales". United States. doi:10.1016/S1359-6454(00)00003-3.
@article{osti_20075930,
title = {Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys -- 2. Microstructural length scales},
author = {Ma, D. and Li, Y. and Ng, S.C. and Jones, H.},
abstractNote = {Experimental results are presented of solidification microstructure length scale including {eta}-phase cell spacing, primary {epsilon} secondary dendrite arm spacing, size of nonaligned dendrite of primary {epsilon}, and volume fraction of primary {epsilon}, as functions of alloy concentration (containing up to 7.37 wt% Cu) and growth velocity (ranging from 0.02 to 4.82 mm/s) in the unidirectional solidification of Zn-rich Zn-Cu peritectic alloys. Intercellular spacing ({lambda}) of two-phase cellular structure decreases with increasing growth velocity (V) such that {lambda}V{sup 1/2} is constant at a fixed alloy concentration in parametric agreement with the KGT and Hunt-Lu models. The value of {lambda}V{sup 1/2} varies from 216 {+-} 10 to 316 {+-} 55 {micro}m{sup 3/2}/s{sup 1/2} with decrease in alloy concentration from 4.94 to 2.17 wt% Cu. These values are much greater than for normal eutectic systems but comparable with monotectic alloys. Dendritic secondary arm spacing ({lambda}{sub 2}) of primary {epsilon} decreases with increasing V such that {lambda}{sub 2}V{sup 1/3} is constant ranging 14.9 {+-} 0.9 to 75.6 {+-} 8.1 {micro}m{sup 4/3}/s{sup 1/3} with increase in alloy concentration (C{sub 0}) from 2.17 to 7.37 wt% Cu, which is in parametric agreement with predictions of arm-coarsening theory. The volume fraction (f{sub e}) of primary {epsilon} increases with increasing V for Zn-rich Zn-3.37, 4.94 and 7.37 wt% Cu hyperperitectic alloys. Predictions of the Scheil and Sarreal-Abbaschian models show good agreement with the observed f{sub {epsilon}} for Zn-4.94 wt% Cu at moderate V from 0.19 to 2.64 mm/s, but fail at low V of less than 0.16 mm/s and at high V of greater than 3.54 mm/s. The measured average size, {Lambda}V{sup 1/2} is constant for a given alloy, increasing from (0.98 {+-} 0.04) x 10{sup 3} to (7.2 {+-} 0.7) x 10{sup 3} {micro}m{sup 3/2}/s{sup 1/2} with increase in alloy concentration from 2.17 to 4.94 wt% Cu.},
doi = {10.1016/S1359-6454(00)00003-3},
journal = {Acta Materialia},
issn = {1359-6454},
number = 8,
volume = 48,
place = {United States},
year = {2000},
month = {5}
}