skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons

Abstract

Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events underlying phototoxicity. This suggests that variation in light spectra present in natural waters, arising from variation in dissolved organic carbon composition, is an important determinant of phototoxicity risk in specific, PAH-contaminated waterbodies. To quantify the effect of environmentally realistic variation in light spectra on toxicity, brine shrimp (Artemia salina) assays were conducted under various light spectra and with three PAHs (pyrene, fluoranthene, and anthracene) of known phototoxicity potential. In these spectral assays, the total ultraviolet light present was equivalent; only the spectral characteristics varied. Based on the absorbance spectra of these PAHs, it was predicted that toxicity, quantified using immobilization as the endpoint, would vary significantly among light spectra in pyrene assays, but not in anthracene assays, and that variation in toxicity in fluoranthene assays would be intermediate. The results supported these assumptions. In the pyrene exposures, the glass filter time to 50% population immobilization (IT50) (39.5 min) was 117% longer than the KCr filter IT50 (18.2 min). In themore » fluoranthene exposures, the glass filter IT50 (49.5 min) was 27% longer than the KCr filter IT50 (39.1 min). In the anthracene exposures, the glass filter IT50 (62.2 min) was not statistically different from the KCr filter IT50 (63.8 min). Comparison of these results with the results of assays conducted under neutral-density filters (that change intensity but not spectral distribution) demonstrate that multiplying spectral intensity by wavelength-specific absorbance accurately predicts relative photoinduced toxicity among the experimental treatments. These results indicate that quantifying the spectral characteristics of PAH-contaminated aquatic environments may be an important component of risk assessment at these sites.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Environmental Protection Agency, Duluth, MN (US)
OSTI Identifier:
20067675
Alternate Identifier(s):
OSTI ID: 20067675
Resource Type:
Journal Article
Journal Name:
Environmental Toxicology and Chemistry
Additional Journal Information:
Journal Volume: 19; Journal Issue: 5; Other Information: PBD: May 2000; Journal ID: ISSN 0730-7268
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; WATER POLLUTION; CONDENSED AROMATICS; PHOTOCHEMICAL REACTIONS; BIOASSAY; SHRIMP; BIOLOGICAL INDICATORS

Citation Formats

Diamond, S.A., Mount, D.R., Burkhard, L.P., Ankley, G.T., Makynen, E.A., and Leonard, E.N. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons. United States: N. p., 2000. Web. doi:10.1897/1551-5028(2000)019<1389:EOISOT>2.3.CO;2.
Diamond, S.A., Mount, D.R., Burkhard, L.P., Ankley, G.T., Makynen, E.A., & Leonard, E.N. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons. United States. doi:10.1897/1551-5028(2000)019<1389:EOISOT>2.3.CO;2.
Diamond, S.A., Mount, D.R., Burkhard, L.P., Ankley, G.T., Makynen, E.A., and Leonard, E.N. Mon . "Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons". United States. doi:10.1897/1551-5028(2000)019<1389:EOISOT>2.3.CO;2.
@article{osti_20067675,
title = {Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons},
author = {Diamond, S.A. and Mount, D.R. and Burkhard, L.P. and Ankley, G.T. and Makynen, E.A. and Leonard, E.N.},
abstractNote = {Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events underlying phototoxicity. This suggests that variation in light spectra present in natural waters, arising from variation in dissolved organic carbon composition, is an important determinant of phototoxicity risk in specific, PAH-contaminated waterbodies. To quantify the effect of environmentally realistic variation in light spectra on toxicity, brine shrimp (Artemia salina) assays were conducted under various light spectra and with three PAHs (pyrene, fluoranthene, and anthracene) of known phototoxicity potential. In these spectral assays, the total ultraviolet light present was equivalent; only the spectral characteristics varied. Based on the absorbance spectra of these PAHs, it was predicted that toxicity, quantified using immobilization as the endpoint, would vary significantly among light spectra in pyrene assays, but not in anthracene assays, and that variation in toxicity in fluoranthene assays would be intermediate. The results supported these assumptions. In the pyrene exposures, the glass filter time to 50% population immobilization (IT50) (39.5 min) was 117% longer than the KCr filter IT50 (18.2 min). In the fluoranthene exposures, the glass filter IT50 (49.5 min) was 27% longer than the KCr filter IT50 (39.1 min). In the anthracene exposures, the glass filter IT50 (62.2 min) was not statistically different from the KCr filter IT50 (63.8 min). Comparison of these results with the results of assays conducted under neutral-density filters (that change intensity but not spectral distribution) demonstrate that multiplying spectral intensity by wavelength-specific absorbance accurately predicts relative photoinduced toxicity among the experimental treatments. These results indicate that quantifying the spectral characteristics of PAH-contaminated aquatic environments may be an important component of risk assessment at these sites.},
doi = {10.1897/1551-5028(2000)019<1389:EOISOT>2.3.CO;2},
journal = {Environmental Toxicology and Chemistry},
issn = {0730-7268},
number = 5,
volume = 19,
place = {United States},
year = {2000},
month = {5}
}