skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalytic cyclopropane hydrogenation on platinum(111) using in situ soft X-ray methods

Journal Article · · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical
DOI:https://doi.org/10.1021/jp993428x· OSTI ID:20034448

As part of a continuing program focused on the role of hydrogen in catalytic reactions, cyclopropane hydrogenation on the Pt(111) surface has been characterized using in situ soft X-ray studies above the carbon K edge. In situ soft X-ray methods provide interesting new information regarding concentrations, stoichiometries, bonding, and reactivities of adsorbed carbon-containing species under reaction conditions. At low temperature, cyclopropane is weakly adsorbed and tilted up from the Pt(111) surface. The saturation coverage is 4.4 x 10{sup 14} molecules/cm{sup 2} at 100 K. Catalytic hydrogenation of cyclopropane to form propane is observed during batch reactivity studies in the 350 K range. No methane or ethane products are observed. Approximately 2.9 x 10{sup 14} C{sub 3} molecules/cm{sup 2} of adsorbed carbonaceous species are observed on the surface at 350 K under reaction conditions. The concentration of these species decreases above 350 K in excess hydrogen. In situ isothermal reactivity studies in hydrogen near 350 K indicated that a significant fraction of these species can be removed from the surface with a thermal activation energy of 15.2 kcal/mol. Taken together the observation of catalytic propane formation and the estimated activation energy suggests that the surface species are directly involved in propane formation. In situ characterization of this species, using soft X-ray C-H intensities to determine stoichiometry, indicates that a C{sub 3}H{sub 6} species is dominant up to 320 K. In situ glancing and normal spectra taken at 320 K indicate that the C{sub 3}H{sub 6} species is a platinacylobutane intermediate adsorbed in an upright configuration relative to the surface. Increasing temperature to 350 K under reaction conditions increases the average C-H stoichiometry to C{sub 3}H{sub 7}. This hydrogen addition suggests formation of adsorbed propyl in the 350 K temperature range. Taken together these experiments indicate that the dominant mechanism for C-C bond breaking is associated with insertion of the Pt surface into the adsorbed cyclopropane reactant to form a metallocycle intermediate. This metallocycle is strongly bound and stable up to 320 K in large excesses of hydrogen. With increasing temperature this C{sub 3} platinacyclobutane intermediate is hydrogenated for form propane in the 350 K range. Observation of a hydrogenated C{sub 3}H{sub 7} intermediate suggests that propane formation may involve sequential hydrogen addition and a transient propyl intermediate.

Research Organization:
Univ. of Michigan, Ann Arbor, MI (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
FG02-91ER14190
OSTI ID:
20034448
Journal Information:
Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical, Vol. 104, Issue 14; Other Information: PBD: 13 Apr 2000; ISSN 1089-5647
Country of Publication:
United States
Language:
English

Similar Records

The hydrogenation and dehydrogenation of C2-C4 hydrocarbons on Pt(111) monitored in situ over 13 orders of magnitude in pressure with infrared-visible sum frequency generation
Thesis/Dissertation · Wed May 01 00:00:00 EDT 1996 · OSTI ID:20034448

The thermal chemistry of 1-chloro-3-iodopropane (ClC{sub 3}H{sub 6}I) adsorbed on Pt(111)
Journal Article · Thu Nov 04 00:00:00 EST 1999 · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical · OSTI ID:20034448

Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface
Journal Article · Wed Jan 12 00:00:00 EST 2000 · Journal of the American Chemical Society · OSTI ID:20034448