skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Augmentation of heat transfer by longitudinal vortices in plate-fin heat exchangers with two rows of tubes

Conference ·
OSTI ID:20030444

The thermal performance of fin-tube compact heat exchangers is highly affected by the thermal resistance occurring on the air side, which is much higher than the thermal resistance inside the tubes. Since this kind of heat exchanger is widely used in these days, with applications on air-conditioning, refrigeration, automobilistic industry and many other areas, the development of more efficient and cheaper heat exchangers is highly attractive, because it will permit the manufacturing of more competitive equipments. This work presents results of numerical simulations for fin-tube compact heat exchangers using smooth fins and longitudinal vortex generators. The computational model has two rows of round tubes in staggered arrangement. Built-in delta winglet vortex generators were used, and its geometric dimensions were chosen according to the best results of literature. The steady-state numerical simulations were carried out at Re = 300, with a code based on the finite volume method. The typical configuration, where the vortex generators of both tube rows have identical parameters set, was compared with new ones where the vortex generators of the second row have different attack angles and positions. The global and local influence of vortex generators on heat transfer and flow losses are analyzed by comparison with a smooth fin model without vortex generators. The results show that a best heat transfer performance can be obtained by positioning the vortex generators of the second row at a particular position and angle of attack, when the increasing of the flow losses was smaller than the heat transfer enhancement achieved.

Research Organization:
Polytechnic School of Univ. of Sao Paulo (BR)
OSTI ID:
20030444
Resource Relation:
Conference: 5th ASME/JSME Thermal Engineering Joint Conference, San Diego, CA (US), 03/14/1999--03/19/1999; Other Information: 1 CD-ROM. Operating system required: Windows i386(tm), i486(tm), Pentium (R) or Pentium Pro, MS Windows 3.1, 95, or NT 3.51, 8 MB RAM, MacIntosh and Power MacIntosh with a 68020 or greater processor, System software version 7.1, 3.5 MB RAM (5 MB for PowerMac) 6 MB available hard-disk space, Unix; PBD: 1999; Related Information: In: Proceedings of the 5th ASME/JSME thermal engineering joint conference, [3600] pages.
Country of Publication:
United States
Language:
English