skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nature of photovoltaic action in dye-sensitized solar cells

Journal Article · · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical
DOI:https://doi.org/10.1021/jp993187t· OSTI ID:20026907

The authors explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, the basic cause for the photovoltage was confirmed as the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor-contact interface. The mesoporosity and nanocrystallinity of the semiconductor are important not only because of the large amount of dye that can be adsorbed on the system's very large surface, but also for two additional reasons: (1) it allows the semiconductor small particles to become almost totally depleted upon immersion in the electrolyte (allowing for large photovoltages), and (2) the proximity of the electrolyte to all particles modes screening of injected electrons, and thus their transport, possible.

Research Organization:
Weizmann Inst. of Science, Rehovot (IL)
OSTI ID:
20026907
Journal Information:
Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical, Vol. 104, Issue 9; Other Information: PBD: 9 Mar 2000; ISSN 1089-5647
Country of Publication:
United States
Language:
English

Similar Records

Charge separation in solid-state dye-sensitized heterojunction solar cells
Journal Article · Wed Aug 18 00:00:00 EDT 1999 · Journal of the American Chemical Society · OSTI ID:20026907

Preferential Direction of Electron Transfers at a Dye–Metal Oxide Interface with an Insulating Fluorinated Self-Assembled Monolayer and MgO
Journal Article · Mon Nov 15 00:00:00 EST 2021 · Journal of Physical Chemistry. C · OSTI ID:20026907

Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells
Journal Article · Thu Jan 28 00:00:00 EST 1999 · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical · OSTI ID:20026907