skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preliminary results of pre-combustion removal of mercury, arsenic, and selenium from coal by dry magnetic separation

Conference ·
OSTI ID:20013422

The authors report the results of preliminary measurements of pre-combustion separation of major metal oxides and trace elements from coal by dry magnetic separation. The measurements have been made as part of ETCi's development of MagMill{trademark} technology for removing mineral matter from coal at the pulverizer at the front end of a coal fired power plant. The technology is specific to separation of mercury, arsenic, and selenium because of their associations with iron pyrites in coal. Measurements were made on a suite of five Eastern US and five Illinois Basin bituminous rank coals prepared at 8 Mesh topsize and processed as 8 Mesh by zero fractions through a dry Para Trap Magnetic Separator. Measurements of major metals and trace elements were made on the feed coal, the magnetic refuse fraction and the magnetic clean coal product. The range of weight recoveries measured for 13 of the trace elements for the suite of coals indicates a significant potential for pre-combustion removal of trace elements and especially for mercury, selenium, and arsenic by dry magnetic methods. While these three elements are important because they are considered hazardous air pollutant precursors, pre-combustion removal of arsenic is especially important because of its role in poisoning catalysts used in emerging SO{sub x} and NO{sub x} control technologies.

Research Organization:
EXPORTech Co., Inc., New Kensington, PA (US)
OSTI ID:
20013422
Resource Relation:
Conference: 24th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL (US), 03/08/1999--03/11/1999; Other Information: PBD: [1999]; Related Information: In: The proceedings of the 24th international technical conference on coal utilization and fuel systems, by Sakkestad, B.A. [ed.], 1091 pages.
Country of Publication:
United States
Language:
English