skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment

Abstract

A probabilistic model was developed to predict effects threshold concentrations for chlorinated benzenes in sediment. Based on published quantitative structure-activity relationships relating the toxicity of chlorinated benzenes to the degree of chlorination, congeners with the same number of chlorine substitutions were considered toxicologically equivalent. Hexachlorobenzene was excluded from the assessment based on a lack of aquatic toxicity at the water solubility limit. The equilibrium partitioning approach was applied in a probabilistic analysis to derive predicted effects thresholds (PETs) for each chlorinated benzene group, with model input distributions defined by published log K{sub ow} values and aquatic toxicity data extracted from the published literature. The probabilistic distributions of PETs generally increased with chlorination, with 20th percentile values ranging from 3.2 mg/kg{sub 1{degree}OC} for chlorobenzene to 67 mg/kg{sub 1%OC} for tetrachlorobenzene congeners. The toxicity of total chlorinated benzenes in sediment can be assessed by applying the PETs in a toxic index model, based on the assumption that multiple chlorinated benzene congeners will show approximately additive toxicity, as characteristic of nonpolar narcotic toxicants. The 20th percentile PET values are one to two orders of magnitude higher than published screening-level guidelines, suggesting that the screening-level guidelines will provide overly conservative assessments in most cases.more » Relevant spiked sediment toxicity data are very limited but seem consistent with the probabilistic model; additional testing could be conducted to confirm the model's predictions.« less

Authors:
; ;
Publication Date:
Research Org.:
McLaren/Hart-ChemRisk, Cleveland, OH (US)
OSTI Identifier:
20006638
Alternate Identifier(s):
OSTI ID: 20006638
Resource Type:
Journal Article
Journal Name:
Environmental Toxicology and Chemistry
Additional Journal Information:
Journal Volume: 18; Journal Issue: 9; Other Information: PBD: Sep 1999; Journal ID: ISSN 0730-7268
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 56 BIOLOGY AND MEDICINE, APPLIED STUDIES; WATER POLLUTION; SEDIMENTS; CHLORINATED AROMATIC HYDROCARBONS; MATHEMATICAL MODELS; FORECASTING; ECOLOGICAL CONCENTRATION; TOXICITY; AQUATIC ORGANISMS

Citation Formats

Fuchsman, P.C., Duda, D.J., and Barber, T.R. A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment. United States: N. p., 1999. Web. doi:10.1897/1551-5028(1999)018<2100:AMTPTC>2.3.CO;2.
Fuchsman, P.C., Duda, D.J., & Barber, T.R. A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment. United States. doi:10.1897/1551-5028(1999)018<2100:AMTPTC>2.3.CO;2.
Fuchsman, P.C., Duda, D.J., and Barber, T.R. Wed . "A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment". United States. doi:10.1897/1551-5028(1999)018<2100:AMTPTC>2.3.CO;2.
@article{osti_20006638,
title = {A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment},
author = {Fuchsman, P.C. and Duda, D.J. and Barber, T.R.},
abstractNote = {A probabilistic model was developed to predict effects threshold concentrations for chlorinated benzenes in sediment. Based on published quantitative structure-activity relationships relating the toxicity of chlorinated benzenes to the degree of chlorination, congeners with the same number of chlorine substitutions were considered toxicologically equivalent. Hexachlorobenzene was excluded from the assessment based on a lack of aquatic toxicity at the water solubility limit. The equilibrium partitioning approach was applied in a probabilistic analysis to derive predicted effects thresholds (PETs) for each chlorinated benzene group, with model input distributions defined by published log K{sub ow} values and aquatic toxicity data extracted from the published literature. The probabilistic distributions of PETs generally increased with chlorination, with 20th percentile values ranging from 3.2 mg/kg{sub 1{degree}OC} for chlorobenzene to 67 mg/kg{sub 1%OC} for tetrachlorobenzene congeners. The toxicity of total chlorinated benzenes in sediment can be assessed by applying the PETs in a toxic index model, based on the assumption that multiple chlorinated benzene congeners will show approximately additive toxicity, as characteristic of nonpolar narcotic toxicants. The 20th percentile PET values are one to two orders of magnitude higher than published screening-level guidelines, suggesting that the screening-level guidelines will provide overly conservative assessments in most cases. Relevant spiked sediment toxicity data are very limited but seem consistent with the probabilistic model; additional testing could be conducted to confirm the model's predictions.},
doi = {10.1897/1551-5028(1999)018<2100:AMTPTC>2.3.CO;2},
journal = {Environmental Toxicology and Chemistry},
issn = {0730-7268},
number = 9,
volume = 18,
place = {United States},
year = {1999},
month = {9}
}