skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predicting apparent Sherwood numbers for fluidized beds

Abstract

Mass transfer data of bubbling fluidized beds have been reevaluated with a new model which is completely predictive. The model is based on a two-phase approach with active bypass, formally plug flow for the suspension gas and a consideration of backmixing in the main kinetic coefficient, i.e. in the apparent particle-to-fluid Sherwood number. A good agreement with experimental results of various authors with a broad range of Reynolds numbers and particle diameters is demonstrated.

Authors:
;
Publication Date:
Research Org.:
Otto-von-Guericke-Univ., Magdeburg (DE)
OSTI Identifier:
20006236
Resource Type:
Journal Article
Resource Relation:
Journal Name: Drying Technology; Journal Volume: 17; Journal Issue: 7-8; Conference: 11th International Drying Symposium (IDS'98), Halkidiki (GR), 08/19/1998--08/22/1998; Other Information: PBD: Aug-Sep 1999
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; DRYERS; FLUIDIZED BEDS; MASS TRANSFER; MATHEMATICAL MODELS; PARTICLE SIZE

Citation Formats

Groenewold, H., and Tsotsas, E.. Predicting apparent Sherwood numbers for fluidized beds. United States: N. p., 1999. Web. doi:10.1080/07373939908917635.
Groenewold, H., & Tsotsas, E.. Predicting apparent Sherwood numbers for fluidized beds. United States. doi:10.1080/07373939908917635.
Groenewold, H., and Tsotsas, E.. 1999. "Predicting apparent Sherwood numbers for fluidized beds". United States. doi:10.1080/07373939908917635.
@article{osti_20006236,
title = {Predicting apparent Sherwood numbers for fluidized beds},
author = {Groenewold, H. and Tsotsas, E.},
abstractNote = {Mass transfer data of bubbling fluidized beds have been reevaluated with a new model which is completely predictive. The model is based on a two-phase approach with active bypass, formally plug flow for the suspension gas and a consideration of backmixing in the main kinetic coefficient, i.e. in the apparent particle-to-fluid Sherwood number. A good agreement with experimental results of various authors with a broad range of Reynolds numbers and particle diameters is demonstrated.},
doi = {10.1080/07373939908917635},
journal = {Drying Technology},
number = 7-8,
volume = 17,
place = {United States},
year = 1999,
month = 9
}
  • Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter ofmore » the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)« less
  • A model for calculating the limiting values of the Sherwood and the Nusselt numbers is proposed. It is argued that these numbers, when based on local driving forces, must approach finite values as the Reynolds number approaches zero. The calculated results are in good agreement with available experimental data.
  • Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
  • We critically analyze the Bell et al. findings on 'anomalous' widths of high-order hydrogen radio recombination lines in the Orion Nebula at 6 GHz. We review their method of modified frequency switching and show that the way this method is used for large {Delta}n is not optimal and can lead to misinterpretation of measured spectral line parameters. Using a model of the Orion Nebula, conventional broadening theory, and Monte Carlo simulation, we determine a transition zone n = 224, ..., 241 ({Delta}n = 11, ..., 14), where measurement errors grow quickly with n and become comparable with the measurement valuesmore » themselves. When system noise and spectrum channelization are accounted for, our simulation predicts 'processed' line narrowing in the transition zone similar to that reported by Bell et al. We find good agreement between our simulation results and their findings, both in line temperatures and widths. We conclude, therefore, that Bell et al.'s findings do not indicate a need to revise Stark broadening theory.« less