skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tritiated water on a molecular sieve: Water dynamics and anomalous pressure observations

Journal Article · · Transactions of the American Nuclear Society
OSTI ID:20005745

The production of fusion energy in a tokamak using deuterium (D) and tritium (T) requires the safe handling and processing of exhaust gases that contain various amounts of tritium. Initial operation of the Tokamak Fusion Test Reactor (TFTR), Princeton Plasma Physics Laboratory, oxidized exhaust gases for tritium recovery or long-term storage. One of the most efficient and safest ways to contain tritiated water is to sorb it onto a pelletized 4A molecular sieve. For that reason, a disposable molecular sieve bed (DMSB) was designed as a pressure vessel because of the possibility of pressure generation from the self-radiolysis of tritiated water. Two months after removing a DMSB from the process at TFTR, a pressure in excess of that predicted from self-radiolysis was observed. Interestingly, pressure measurements at longer times (up to 2.5 yr) showed less pressure than expected. Pressure was not being generated in the DMSBs at the predicted rate. This was unexpected and prompted an investigation into the mechanism responsible for the anomalous pressure measurements.

Research Organization:
Westinghouse Savannah River Co., Aiken, SC (US)
OSTI ID:
20005745
Journal Information:
Transactions of the American Nuclear Society, Vol. 81; Conference: American Nuclear Society 1999 Winter Meeting, Long Beach, CA (US), 11/14/1999--11/18/1999; Other Information: PBD: 1999; ISSN 0003-018X
Country of Publication:
United States
Language:
English