skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulfur-vanadium oxide gel composites as thin film cathodes for rechargeable lithium batteries

Abstract

A class of novel electroactive cathode materials based on composites produced from elemental sulfur and vanadium oxide xerogels or aerogels has been developed as models for lithium battery applications. The use of elemental sulfur in rechargeable lithium batteries has been hindered due to certain limitations such as, very low electronic conductivity and the out-diffusion of polysulfides during the cycling process which reduces the cycling efficiency. Vanadium oxide xerogels and aerogels have certain desirable characteristic physico-chemical properties, such as, high surface areas with nono-scale interconnecting porosity, high electronic conductivity, non- or nanocrystallinity, and oxidation reduction catalytic activity. Since these properties may improve the performance of sulfur based rechargeable batteries, a family of composite cathodes containing elemental sulfur and vanadium oxide gels were produced. The performance of the composites cathodes, in thin film form, were evaluated in coin cells and AA cells with metallic lithium anodes and liquid electrolytes. The multifunctional role of vanadium oxide gels on the cell performance of the cells having composite cathodes has been qualitatively explored. Results indicate that the cathodes having xerogel composites based on vanadium oxide sol from vanadium oxide isopropoxide can be made with high sulfur content (80 wt %) and with low carbon contentmore » (5 wt %) and without any polymer binder. This shows the contribution of adhesive properties and electronic conductivity of vanadium oxide xerogels. A significant suppression of polysulfide out-diffusion is observed with appropriate processing of the composite cathodes. It is anticipated that the nanoscale interconnecting porosity of gels plays an important role in this behavior. An excellent rate capability is observed with the vanadium-oxide sulfur composite cathodes indicating the contribution of intrinsic electrochemical properties of the vanadium oxide.« less

Authors:
; ;
Publication Date:
Research Org.:
Moltech Corp., Tucson, AZ (US)
OSTI Identifier:
20000327
Resource Type:
Conference
Resource Relation:
Conference: 33rd Intersociety Energy Conversion Engineering Conference, Colorado Springs, CO (US), 08/02/1998--08/06/1998; Other Information: 1 CD-ROM. Operating system required: Windows 3.x; Windows95/NT; Macintosh; UNIX. All systems need 2X CD-ROM drive., PBD: 1998; Related Information: In: Proceedings of the 33. intersociety energy conversion engineering conference, by Anghaie, S. [ed.], [2800] pages.
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; CATHODES; COMPOSITE MATERIALS; VANADIUM OXIDES; SULFUR; GELS; PERFORMANCE; ELECTRIC CONDUCTIVITY; ELECTROCHEMISTRY; METAL-NONMETAL BATTERIES; LITHIUM

Citation Formats

Mukherjee, S P, Gavrilov, A B, and Skotheim, T A. Sulfur-vanadium oxide gel composites as thin film cathodes for rechargeable lithium batteries. United States: N. p., 1998. Web.
Mukherjee, S P, Gavrilov, A B, & Skotheim, T A. Sulfur-vanadium oxide gel composites as thin film cathodes for rechargeable lithium batteries. United States.
Mukherjee, S P, Gavrilov, A B, and Skotheim, T A. 1998. "Sulfur-vanadium oxide gel composites as thin film cathodes for rechargeable lithium batteries". United States.
@article{osti_20000327,
title = {Sulfur-vanadium oxide gel composites as thin film cathodes for rechargeable lithium batteries},
author = {Mukherjee, S P and Gavrilov, A B and Skotheim, T A},
abstractNote = {A class of novel electroactive cathode materials based on composites produced from elemental sulfur and vanadium oxide xerogels or aerogels has been developed as models for lithium battery applications. The use of elemental sulfur in rechargeable lithium batteries has been hindered due to certain limitations such as, very low electronic conductivity and the out-diffusion of polysulfides during the cycling process which reduces the cycling efficiency. Vanadium oxide xerogels and aerogels have certain desirable characteristic physico-chemical properties, such as, high surface areas with nono-scale interconnecting porosity, high electronic conductivity, non- or nanocrystallinity, and oxidation reduction catalytic activity. Since these properties may improve the performance of sulfur based rechargeable batteries, a family of composite cathodes containing elemental sulfur and vanadium oxide gels were produced. The performance of the composites cathodes, in thin film form, were evaluated in coin cells and AA cells with metallic lithium anodes and liquid electrolytes. The multifunctional role of vanadium oxide gels on the cell performance of the cells having composite cathodes has been qualitatively explored. Results indicate that the cathodes having xerogel composites based on vanadium oxide sol from vanadium oxide isopropoxide can be made with high sulfur content (80 wt %) and with low carbon content (5 wt %) and without any polymer binder. This shows the contribution of adhesive properties and electronic conductivity of vanadium oxide xerogels. A significant suppression of polysulfide out-diffusion is observed with appropriate processing of the composite cathodes. It is anticipated that the nanoscale interconnecting porosity of gels plays an important role in this behavior. An excellent rate capability is observed with the vanadium-oxide sulfur composite cathodes indicating the contribution of intrinsic electrochemical properties of the vanadium oxide.},
doi = {},
url = {https://www.osti.gov/biblio/20000327}, journal = {},
number = ,
volume = ,
place = {United States},
year = {1998},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: