skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The impact of a deregulated European electricity market on Volvo in Sweden

Abstract

The member countries within the European Union (EU) have agreed to open all national electricity markets for competition, starting January 1, 1999. The electricity market in Sweden is deregulated since January 1, 1996. The deregulation of the electricity markets will gradually shift the electricity price levels in different countries towards an equal price level, which will most likely be close to the levels on the Continental Europe. A deregulated European electricity market may change the competition situation for Swedish industries dramatically. The capacity in electric generation with low operating costs in Sweden has led to very low electricity prices and high usage level compared to other EU countries. The consumption level of electric energy per capita is nearly three times higher in Sweden than the average per capita EU usage. The high level of electricity consumption is typical also of industrial customers in Sweden. Studies of Volvo Car Corporation have shown that the Volvo car plant in Torslanda, Sweden utilizes substantially more electric energy per manufactured car than the Volvo car plant in Gent, Belgium. A method is developed to transform the Torslanda plant from a low energy efficiency state to a higher energy efficiency state by modeling. The methodmore » is based on the Life Cycle Cost (LCC) concept and includes optimization models of the two plants with mixed integer linear programming (MILP).« less

Authors:
Publication Date:
Research Org.:
Linkoping University (SE)
OSTI Identifier:
20000195
Resource Type:
Conference
Resource Relation:
Conference: 33rd Intersociety Energy Conversion Engineering Conference, Colorado Springs, CO (US), 08/02/1998--08/06/1998; Other Information: 1 CD-ROM. Operating system required: Windows 3.x; Windows 95/NT; Macintosh; UNIX. All systems need 2X CD-ROM drive., PBD: 1998; Related Information: In: Proceedings of the 33. intersociety energy conversion engineering conference, by Anghaie, S. [ed.], [2800] pages.
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; AUTOMOTIVE INDUSTRY; INDUSTRIAL PLANTS; ENERGY CONSERVATION; MATHEMATICAL MODELS; LIFE-CYCLE COST; LINEAR PROGRAMMING

Citation Formats

Dag, S. The impact of a deregulated European electricity market on Volvo in Sweden. United States: N. p., 1998. Web.
Dag, S. The impact of a deregulated European electricity market on Volvo in Sweden. United States.
Dag, S. 1998. "The impact of a deregulated European electricity market on Volvo in Sweden". United States.
@article{osti_20000195,
title = {The impact of a deregulated European electricity market on Volvo in Sweden},
author = {Dag, S},
abstractNote = {The member countries within the European Union (EU) have agreed to open all national electricity markets for competition, starting January 1, 1999. The electricity market in Sweden is deregulated since January 1, 1996. The deregulation of the electricity markets will gradually shift the electricity price levels in different countries towards an equal price level, which will most likely be close to the levels on the Continental Europe. A deregulated European electricity market may change the competition situation for Swedish industries dramatically. The capacity in electric generation with low operating costs in Sweden has led to very low electricity prices and high usage level compared to other EU countries. The consumption level of electric energy per capita is nearly three times higher in Sweden than the average per capita EU usage. The high level of electricity consumption is typical also of industrial customers in Sweden. Studies of Volvo Car Corporation have shown that the Volvo car plant in Torslanda, Sweden utilizes substantially more electric energy per manufactured car than the Volvo car plant in Gent, Belgium. A method is developed to transform the Torslanda plant from a low energy efficiency state to a higher energy efficiency state by modeling. The method is based on the Life Cycle Cost (LCC) concept and includes optimization models of the two plants with mixed integer linear programming (MILP).},
doi = {},
url = {https://www.osti.gov/biblio/20000195}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jul 01 00:00:00 EDT 1998},
month = {Wed Jul 01 00:00:00 EDT 1998}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: