Interlaboratory Study: Testing Reproducibility of Solid Biofuels Component Identification Using Reflected Light Microscopy
Considering global market trends and concerns about climate change and sustainability, increased biomass use for energy is expected to continue. As more diverse materials are being utilized to manufacture solid biomass fuels, it is critical to implement quality assessment methods to analyze these fuels thoroughly. One such method is reflected light microscopy (RLM), which has the potential to complement and enhance current standard testing, leading to improving fuel quality assessment and, ultimately, preventing avoidable air pollution. An interlaboratory study (ILS) was conducted to test the reproducibility of biomass fuels component identification using a reflected light microscopy technique. The exercise was conducted on thirty photomicrographs showing biomass and various undesired components (like plastics or mineral matter), which were purposely added (by the ILS organizers) to contaminate wood pellets and charcoal-based grilling fuels. Forty-six participants had various levels of difficulty identifying the marked components, and as a result, the percentage of correct answers ranged from 52.2 to 94.4%. Among the most difficult components to distinguish were petroleum products and inorganic matter. Various reasons led to the misidentification, including insufficient morphological descriptions of the components provided to participants, ambiguities of the nomenclature, limitations of the analytical and exercise method, and insufficient experience of the participants. Overall, the results indicate that RLM has the potential to enhance the quality assessment of biomass fuels. However, they also demonstrate that the petrographic classification used in this exercise requires further refinement before it can be standardized. While a new simplified classification of solid biomass fuels components was created as an outcome of this study, future research is necessary to refine the nomenclature, develop a microscopic morphological description of the components, and verify the accuracy of component identification with a follow-up ILS.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE); Polish National Agency for Academic Exchange; University of Silesia
- DOE Contract Number:
- AC36-08GO28308
- OSTI ID:
- 1999663
- Report Number(s):
- NREL/JA-2700-86604; MainId:87377; UUID:e7ecdcd8-6855-4791-b48d-d7db9cb17b9a; MainAdminID:70537
- Journal Information:
- International Journal of Coal Geology, Vol. 277
- Country of Publication:
- United States
- Language:
- English
Similar Records
Results of an interlaboratory study on the working curve in vat photopolymerization
Savannah River National Laboratory Participation in the International Atomic Energy Agency CPC Interlaboratory Comparison Exercise 2