Stabilized Exponential-SAV Schemes Preserving Energy Dissipation Law and Maximum Bound Principle for The Allen–Cahn Type Equations
Journal Article
·
· Journal of Scientific Computing
Not provided.
- Research Organization:
- Univ. of South Carolina, Columbia, SC (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- DOE Contract Number:
- SC0020270
- OSTI ID:
- 1976691
- Journal Information:
- Journal of Scientific Computing, Vol. 92, Issue 2; ISSN 0885-7474
- Publisher:
- Springer
- Country of Publication:
- United States
- Language:
- English
Similar Records
Generalized SAV-Exponential Integrator Schemes for Allen--Cahn Type Gradient Flows
Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes
Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes
Journal Article
·
2022
· SIAM Journal on Numerical Analysis
·
OSTI ID:1980777
Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes
Journal Article
·
2021
· SIAM Review
·
OSTI ID:1852290
+1 more
Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes
Journal Article
·
2020
· SIAM Review
·
OSTI ID:1631279
+1 more