skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved container electrode coatings for Na/S battery systems. Final report

Technical Report ·
DOI:https://doi.org/10.2172/187140· OSTI ID:187140
 [1]
  1. Environmental Research Institute of Michigan, Ann Arbor, MI (United States). Applications Development Dept.

Current sodium sulfur (Na/S) battery systems utilize the fast ion conducting properties of sodium beta{double_prime}-alumina electrolyte (BASE) to create high energy density sodium-sulfur electrochemical cells which can be used as components of secondary batteries. Since the days when these cells were invented at the Ford Motor Company Scientific Laboratory by J.T. Kummer and N. Weber, problems with container electrode corrosion have troubled the Na/S systems that have been developed in the many laboratories. In an unpublished investigation carried out at the Ford Motor Company laboratory, it was shown that titanium nitride films sputter deposited onto aluminum substrates under the appropriate conditions can exhibit excellent resistance to corrosion by sodium polysulfide melts. In the work carried out here, the corrosion resistant properties of TiN coatings sputter deposited on Al substrates have been investigated. TiN sputter coated aluminum samples were tested under static conditions in sodium sulfide melts and in Na/S cells under the range of electrochemical conditions needed for battery operation. The sputter deposited coatings produced in these experiments exhibited satisfactory corrosion resistance in the static tests but degraded under full cell operation. Tests of TiN coatings deposited by reactive ion-plating (IP), a common commercial process, showed excellent corrosion and electrical performance in both static and complete cell testing. Charge/discharge testing of sulfur core cells with IP coatings for over 350 cycles to 70 % depth of discharge has shown only very minor changes in cell performance and the tests are continuing.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
187140
Report Number(s):
LBL-37678; ON: DE96003798
Resource Relation:
Other Information: PBD: Aug 1995
Country of Publication:
United States
Language:
English