Automated Integration of Continental-Scale Observations in Near-Real Time for Simulation and Analysis of Biosphere–Atmosphere Interactions
- National Ecological Observatory Network Program
- Lawrence Berkeley National Laboratory (LBNL)
- ORNL
- Pennsylvania State University
- University of Wisconsin Madison
- National Center for Atmospheric Research (NCAR)
The National Ecological Observatory Network (NEON) is a continental-scale observatory with sites across the US collecting standardized ecological observations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision data in near-real time to the NEON Data Portal and to High Performance Computing (HPC) systems, running ensembles of Earth system models (ESMs) that assimilate the data. For the first time gridded EC data products and response functions promise to offset pervasive observational biases through evaluating, benchmarking, optimizing parameters, and training new machine learning parameterizations within ESMs all at the same model-grid scale. Leveraging open-source software for EC data analysis, we are already building software infrastructure for integration of near-real time data streams into the International Land Model Benchmarking (ILAMB) package for use by the wider research community. We will present a perspective on the design and integration of end-to-end infrastructure for data acquisition, edge computing, HPC simulation, analysis, and validation, where Artificial Intelligence (AI) approaches are used throughout the distributed workflow to improve accuracy and computational performance.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE; USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1819607
- Country of Publication:
- United States
- Language:
- English
Similar Records
2024 Workshop - Remote Sensing and Fluxes Upscaling for Real-world Impact - Tutorial v1
Towards Lightweight Data Integration Using Multi-Workflow Provenance and Data Observability