skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An evaporative and engine-cycle model for fuel octane sensitivity prediction

Abstract

The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with real Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuelsmore » with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.« less

Authors:
;  [1]
  1. Univ. of Stellenbosch (South Africa)
Publication Date:
OSTI Identifier:
178172
Report Number(s):
CONF-9510144-
ISBN 1-56091-702-4; TRN: IM9607%%202
Resource Type:
Conference
Resource Relation:
Conference: International fuels and lubricants meeting and exposition, Toronto (Canada), 16-19 Oct 1995; Other Information: PBD: 1995; Related Information: Is Part Of Gasoline additives and performance. SP-1118; PB: 204 p.
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; 33 ADVANCED PROPULSION SYSTEMS; SPARK IGNITION ENGINES; KNOCK CONTROL; GASOLINE; ANTIKNOCK RATINGS; MATHEMATICAL MODELS

Citation Formats

Moran, D P, and Taylor, A B. An evaporative and engine-cycle model for fuel octane sensitivity prediction. United States: N. p., 1995. Web.
Moran, D P, & Taylor, A B. An evaporative and engine-cycle model for fuel octane sensitivity prediction. United States.
Moran, D P, and Taylor, A B. Sun . "An evaporative and engine-cycle model for fuel octane sensitivity prediction". United States.
@article{osti_178172,
title = {An evaporative and engine-cycle model for fuel octane sensitivity prediction},
author = {Moran, D P and Taylor, A B},
abstractNote = {The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with real Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {1995},
month = {12}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: