skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters

Abstract

We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness λ^>40 in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ~ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness λ^=40, this population makes up >12 per cent (97.5more » percentile) of the total population. Extrapolating this to a measured richness λ^=20 yields >22 per cent (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ~ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ~3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [5];  [6];  [7];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [16];  [17];  [18] more »;  [19];  [20];  [21];  [7];  [22];  [12];  [23];  [24];  [25];  [26];  [17];  [27];  [28];  [17];  [29];  [15];  [19];  [30];  [7];  [31];  [24];  [32];  [33];  [24];  [34];  [12];  [35];  [6];  [19];  [36];  [37];  [38];  [15];  [39];  [40];  [29];  [19];  [27];  [41];  [38];  [30];  [42];  [20];  [7];  [17];  [20];  [3];  [43];  [44];  [45];  [46];  [9];  [29];  [47];  [42];  [48] « less
  1. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany, Excellence Cluster ORIGINS, Boltzmannstr 2, D-85748 Garching, Germany
  2. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany, Excellence Cluster ORIGINS, Boltzmannstr 2, D-85748 Garching, Germany, Max Planck Institute for Extraterrestrial Physics, Giessenbachstr, D-85748 Garching, Germany
  3. INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy, IFPU – Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  4. INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy, IFPU – Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy, Astronomy Unit, Department of Physics, University of Trieste, via Tiepolo 11, I-34131 Trieste, Italy, INFN – National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy
  5. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany, Max Planck Institute for Extraterrestrial Physics, Giessenbachstr, D-85748 Garching, Germany
  6. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil, Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  7. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  8. CEA, Physics Department, Durham University, South Road, Durham DH1 3LE, UK
  9. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  10. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France, Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France
  11. High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA, Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
  12. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  13. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  14. Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife, Spain, Dpto. Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
  15. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  16. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain
  17. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain, Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  18. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
  19. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  20. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain
  21. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  22. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany
  23. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  24. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  25. Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway
  26. Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110, USA
  27. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA, Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
  28. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  29. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  30. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
  31. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
  32. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  33. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  34. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia, Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
  35. Centre for Gravitational Astrophysics, College of Science, The Australian National University, ACT 2601, Australia, The Research School of Astronomy and Astrophysics, Australian National University, ACT 2601, Australia
  36. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  37. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  38. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  39. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain, Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  40. Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706-1390, USA
  41. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA, Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  42. Department of Physics and Astronomy, University of Sussex, Pevensey Building, Brighton BN1 9QH, UK
  43. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  44. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  45. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  46. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  47. Max Planck Institute for Extraterrestrial Physics, Giessenbachstr, D-85748 Garching, Germany, Fakultät für Physik, Universitäts-Sternwarte, Ludwig- Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany
  48. Department of Physics, The Ohio State University, Columbus, OH 43210, USA
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); German Research Foundation (DFG); European Research Council (ERC); National Science Foundation (NSF); MINECO; CNPq; USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1781476
Alternate Identifier(s):
OSTI ID: 1808054; OSTI ID: 1817466
Grant/Contract Number:  
AC02-76SF00515; 291329; 240672; 306478; 465376/2014-2; SEV-2016-0588; SEV-2016-0597; MDM-2015-0509; FPA2015-68048; ESP2015-66861; AYA2015-71825; GBMF 947; R165SBKTMA; AST-1536171; AST-1814719; PLR-1248097; AST-1138766; PHY-0114422; 716762; AC05-00OR22725
Resource Type:
Journal Article: Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 504 Journal Issue: 1; Journal ID: ISSN 0035-8711
Publisher:
Oxford University Press
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; statistical methods; galaxy clusters; large-scale structure of Universe

Citation Formats

Grandis, S., Mohr, J. J., Costanzi, M., Saro, A., Bocquet, S., Klein, M., Aguena, M., Allam, S., Annis, J., Ansarinejad, B., Bacon, D., Bertin, E., Bleem, L., Brooks, D., Burke, D. L., Carnero Rosel, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Choi, A., da Costa, L. N., De Vincente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Ferrero, I., Floyd, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gupta, N., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K., Lahav, O., Lidman, C., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Myles, J., Ogando, R., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Reichardt, C. L., Romer, A. K., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Singh, P., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Weller, J., Wilkinson, R. D., and Wu, H. Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters. United Kingdom: N. p., 2021. Web. doi:10.1093/mnras/stab869.
Grandis, S., Mohr, J. J., Costanzi, M., Saro, A., Bocquet, S., Klein, M., Aguena, M., Allam, S., Annis, J., Ansarinejad, B., Bacon, D., Bertin, E., Bleem, L., Brooks, D., Burke, D. L., Carnero Rosel, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Choi, A., da Costa, L. N., De Vincente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Ferrero, I., Floyd, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gupta, N., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K., Lahav, O., Lidman, C., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Myles, J., Ogando, R., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Reichardt, C. L., Romer, A. K., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Singh, P., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Weller, J., Wilkinson, R. D., & Wu, H. Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters. United Kingdom. https://doi.org/10.1093/mnras/stab869
Grandis, S., Mohr, J. J., Costanzi, M., Saro, A., Bocquet, S., Klein, M., Aguena, M., Allam, S., Annis, J., Ansarinejad, B., Bacon, D., Bertin, E., Bleem, L., Brooks, D., Burke, D. L., Carnero Rosel, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Choi, A., da Costa, L. N., De Vincente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Ferrero, I., Floyd, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gupta, N., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K., Lahav, O., Lidman, C., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Myles, J., Ogando, R., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Reichardt, C. L., Romer, A. K., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Singh, P., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Weller, J., Wilkinson, R. D., and Wu, H. 2021. "Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters". United Kingdom. https://doi.org/10.1093/mnras/stab869.
@article{osti_1781476,
title = {Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters},
author = {Grandis, S. and Mohr, J. J. and Costanzi, M. and Saro, A. and Bocquet, S. and Klein, M. and Aguena, M. and Allam, S. and Annis, J. and Ansarinejad, B. and Bacon, D. and Bertin, E. and Bleem, L. and Brooks, D. and Burke, D. L. and Carnero Rosel, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and Choi, A. and da Costa, L. N. and De Vincente, J. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Doel, P. and Eifler, T. F. and Everett, S. and Ferrero, I. and Floyd, B. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gaztanaga, E. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gupta, N. and Gutierrez, G. and Hinton, S. R. and Hollowood, D. L. and Honscheid, K. and James, D. J. and Jeltema, T. and Kuehn, K. and Lahav, O. and Lidman, C. and Lima, M. and Maia, M. A. G. and March, M. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Morgan, R. and Myles, J. and Ogando, R. and Palmese, A. and Paz-Chinchón, F. and Plazas, A. A. and Reichardt, C. L. and Romer, A. K. and Sanchez, E. and Scarpine, V. and Serrano, S. and Sevilla-Noarbe, I. and Singh, P. and Smith, M. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and To, C. and Weller, J. and Wilkinson, R. D. and Wu, H.},
abstractNote = {We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness λ^>40 in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ~ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness λ^=40, this population makes up >12 per cent (97.5 percentile) of the total population. Extrapolating this to a measured richness λ^=20 yields >22 per cent (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ~ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ~3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.},
doi = {10.1093/mnras/stab869},
url = {https://www.osti.gov/biblio/1781476}, journal = {Monthly Notices of the Royal Astronomical Society},
issn = {0035-8711},
number = 1,
volume = 504,
place = {United Kingdom},
year = {2021},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at https://doi.org/10.1093/mnras/stab869

Save / Share:

Works referenced in this record:

Mass calibration of the CODEX cluster sample using SPIDERS spectroscopy – I. The richness–mass relation
journal, March 2019


redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG
journal, February 2014


Detection of anti-correlation of hot and cold baryons in galaxy clusters
journal, July 2019


Halo exclusion criteria impacts halo statistics
journal, September 2019


Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 <z < 1.25
journal, May 2018


The XMM-LSS survey: the Class 1 cluster sample over the extended 11 deg2 and its spatial distribution
journal, September 2014


Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters
journal, February 2018


eROSITA on SRG
conference, July 2010


Effects of completeness and purity on cluster dark energy constraints
journal, December 2018


Galaxy Clusters Discovered via the Sunyaev-Zel’Dovich Effect in the First 720 Square Degrees of the South pole Telescope Survey
journal, January 2013


redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG
journal, April 2014


Weak lensing measurement of the mass–richness relation of SDSS redMaPPer clusters
journal, December 2016


Simultaneous falsification of Λ CDM and quintessence with massive, distant clusters
journal, January 2011


X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 < z < 1.5 Observed with XMM-Newton
journal, January 2019


emcee : The MCMC Hammer
journal, March 2013

  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925
  • https://doi.org/10.1086/670067

Cosmological Constraints from Galaxy Clusters in the 2500 Square-Degree Spt-Sz Survey
journal, November 2016


CoMaLit – VI. Intrinsic scatter in stacked relations. The weak lensing AMICO galaxy clusters in KiDS-DR3
journal, July 2020


Rhapsody-G simulations: galaxy clusters as baryonic closed boxes and the covariance between hot gas and galaxies
journal, July 2015


The selection function of SZ cluster surveys
journal, December 2004


Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018


On model selection in cosmology
journal, June 2019


Dark Matter halo Profiles of Massive Clusters: Theory Versus Observations
journal, March 2013


Massive Halos in Millennium gas Simulations: Multivariate Scaling Relations
journal, May 2010


The SPTpol Extended Cluster Survey
journal, March 2020


The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog
journal, March 2018


The 10 Meter South Pole Telescope
journal, May 2011

  • Carlstrom, J. E.; Ade, P. A. R.; Aird, K. A.
  • Publications of the Astronomical Society of the Pacific, Vol. 123, Issue 903
  • https://doi.org/10.1086/659879

High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples
journal, January 2017


Scaling relations for galaxy clusters in the Millennium-XXL simulation: Scaling relations for clusters in the MXXL
journal, October 2012


Galaxy Clusters Selected with the Sunyaev-Zel'Dovich Effect from 2008 South pole Telescope Observations
journal, September 2010


Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing
journal, July 2020


Modelling projection effects in optically selected cluster catalogues
journal, October 2018


Localized massive halo properties in bahamas and MACSIS simulations: scalings, lognormality, and covariance
journal, May 2018


Galaxy cluster mass estimation from stacked spectroscopic analysis
journal, May 2016


Stellar property statistics of massive haloes from cosmological hydrodynamics simulations: common kernel shapes
journal, April 2020


Weighing the giants – IV. Cosmology and neutrino mass
journal, November 2014


Orientation bias of optically selected galaxy clusters and its impact on stacked weak-lensing analyses
journal, July 2014


A measurement of CMB cluster lensing with SPT and DES year 1 data
journal, February 2018


Planck 2015 results : XXVII. The second
journal, September 2016


A Catalog of 203 Galaxy Clusters Serendipitously Detected in the ROSAT PSPC Pointed Observations
journal, August 1998


Catalog extraction in SZ cluster surveys: a matched filter approach
journal, September 2006


A new RASS galaxy cluster catalogue with low contamination extending to z ∼ 1 in the DES overlap region
journal, May 2019


The XMM Large-Scale Structure survey: the X-ray pipeline and survey selection function
journal, October 2006


Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources
journal, August 2015


Weak lensing analysis of codex clusters using dark energy camera legacy survey: mass–richness relation
journal, November 2019


A Measurement of the Cosmic Microwave Background Damping tail from the 2500-Square-Degree Spt-Sz Survey
journal, November 2013


The Redmapper Galaxy Cluster Catalog from des Science Verification data
journal, May 2016


Impact of Weak Lensing Mass Calibration on eROSITA Galaxy Cluster Cosmological Studies – a Forecast
journal, June 2019


Galaxy Clusters Discovered via the Sunyaev-Zel'Dovich Effect in the 2500-Square-Degree Spt-Sz Survey
journal, January 2015


Red-sequence cluster finding in the Millennium Simulation
journal, December 2007


Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters
journal, October 2018


The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample
journal, April 2001


LoCuSS: scaling relations between galaxy cluster mass, gas, and stellar content
journal, January 2019


Consistency tests in cosmology using relative entropy
journal, January 2019


Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data
journal, February 2019


A Serendipitous Galaxy Cluster Survey with XMM : Expected Catalog Properties and Scientific Applications
journal, February 2001


Cosmological Parameters from Observations of Galaxy Clusters
journal, September 2011


The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies
journal, June 2017


Properties of the Intracluster Medium in an Ensemble of Nearby Galaxy Clusters
journal, June 1999


Galaxy Clusters Selected via the Sunyaev–Zel’dovich Effect in the SPTpol 100-square-degree Survey
journal, February 2020


Mass variance from archival X-ray properties of Dark Energy Survey Year-1 galaxy clusters
journal, September 2019


Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters
journal, October 2015


Matplotlib: A 2D Graphics Environment
journal, January 2007


redMaPPer – III. A detailed comparison of the Planck 2013 and SDSS DR8 redMaPPer cluster catalogues
journal, April 2015


Methods for cluster cosmology and application to the SDSS in preparation for DES Year 1 release
journal, July 2019


The mass–richness relation of optically selected clusters from weak gravitational lensing and abundance with Subaru HSC first-year data
journal, September 2019


Galaxy kinematics and mass calibration in massive SZE-selected galaxy clusters to z  = 1.3
journal, October 2018


Weighing the giants– V. Galaxy cluster scaling relations
journal, September 2016


Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution
journal, November 2017


The impact of projection effects on cluster observables: stacked lensing and projected clustering
journal, June 2020


Dark energy survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions
journal, February 2021


A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets
journal, November 2017


Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey
journal, March 2017


Validation of selection function, sample contamination and mass calibration in galaxy cluster samples
journal, August 2020


Detection of CMB-Cluster Lensing using Polarization Data from SPTpol
journal, October 2019


The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy cluster survey: V. The cluster catalogue
journal, September 2004