skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation and Comparison of Machine Learning Techniques for Rapid QSTS Simulations

Technical Report ·
DOI:https://doi.org/10.2172/1734485· OSTI ID:1734485
 [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

Rapid and accurate quasi-static time series (QSTS) analysis is becoming increasingly important for distribution system analysis as the complexity of the distribution system intensifies with the addition of new types, and quantities, of distributed energy resources (DER). The expanding need for hosting capacity analysis, control systems analysis, photovoltaic (PV) and DER impact analysis, and maintenance cost estimations are just a few reasons that QSTS is necessary. Historically, QSTS analysis has been prohibitively slow due to the number of computations required for a full-year analysis. Therefore, new techniques are required that allow QSTS analysis to rapidly be performed for many different use cases. This research demonstrates a novel approach to doing rapid QSTS analysis for analyzing the number of voltage regulator tap changes in a distribution system with PV components. A representative portion of a yearlong dataset is selected and QSTS analysis is performed to determine the number of tap changes, and this is used as training data for a machine learning algorithm. The machine learning algorithm is then used to predict the number of tap changes in the remaining portion of the year not analyzed directly with QSTS. The predictions from the machine learning algorithms are combined with the results of the partial year simulation for a final prediction for the entire year, with the goal of maintaining an error <10% on the full-year prediction. Five different machine learning techniques were evaluated and compared with each other; a neural network ensemble, a random forest decision tree ensemble, a boosted decision tree ensemble, support vector machines, and a convolutional neural network deep learning technique. A combination of the neural network ensemble together with the random forest produced the best results. Using 20% of the year as training data, analyzed with QSTS, the average performance of the technique resulted in ~2.5% error in the yearly tap changes, while maintaining a <10% 99.9th percentile error bound on the results. This is a 5x speedup compared to a standard, full-length QSTS simulation. These results demonstrate the potential for applying machine learning techniques to facilitate modern distribution system analysis and further integration of distributed energy resources into the power grid.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000; NA0003525
OSTI ID:
1734485
Report Number(s):
SAND-2018-8018; 666077
Country of Publication:
United States
Language:
English