skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A FEASIBILITY STUDY ON CRACK REPAIR IN AUSTENITIC STAINLESS STEEL DRY STORAGE CANISTERS USING ISOTHERMAL FRICTION STIR WELDING

Abstract

In recent time, solid state crack repair techniques in spent nuclear fuel dry storage canisters (SNF-DSC) have garnered significant interest. Plates of austenitic stainless steels are usually arc welded to fabricate the cylindrical canisters which are prone to chloride-induced stress corrosion cracking. Friction stir welding (FSW) is considered to be a potential candidate for damage repair. In this work, electrical discharge machining was used to simulate cracks in 304L stainless steel plates of 12.7 mm thickness. Subsequently, isothermal FSW was carried out at two different temperatures (725 and 825°C) in order to repair the simulated crack. Microstructure-mechanical property correlations in FSWed plates were studied in detail. Significant grain refinement observed in the stir zone (SZ) was attributed to dynamic recrystallization occurring during FSW. A comparison of Vickers microhardness showed higher hardness and homogeneity in the 725°C SZ than its 825°C counterpart. The fraction of S3 boundary is found to be low in the SZ as compared to base metal (BM). Yield strength of the joints was found to be approximately 100 MPa higher than that of the BM accompanied by a drop in ductility by a factor of 2. Residual stress profile across 825°C weld was measured using x-ray diffraction.

Authors:
 [1];  [1];  [1];  [2];  [2]
  1. University of Idaho
  2. BATTELLE (PACIFIC NW LAB)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1721705
Report Number(s):
PNNL-SA-152523
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Conference
Resource Relation:
Conference: Proceedings of the ASME 2020 Pressure Vessels & Piping Conference (PVP), August 3, 2020, Virtual, Online
Country of Publication:
United States
Language:
English

Citation Formats

Bhattacharyya, Madhumanti, Charit, Indrajit, Raja, Krishnan, Darsell, Jens T., and Jana, Saumyadeep. A FEASIBILITY STUDY ON CRACK REPAIR IN AUSTENITIC STAINLESS STEEL DRY STORAGE CANISTERS USING ISOTHERMAL FRICTION STIR WELDING. United States: N. p., 2020. Web.
Bhattacharyya, Madhumanti, Charit, Indrajit, Raja, Krishnan, Darsell, Jens T., & Jana, Saumyadeep. A FEASIBILITY STUDY ON CRACK REPAIR IN AUSTENITIC STAINLESS STEEL DRY STORAGE CANISTERS USING ISOTHERMAL FRICTION STIR WELDING. United States.
Bhattacharyya, Madhumanti, Charit, Indrajit, Raja, Krishnan, Darsell, Jens T., and Jana, Saumyadeep. 2020. "A FEASIBILITY STUDY ON CRACK REPAIR IN AUSTENITIC STAINLESS STEEL DRY STORAGE CANISTERS USING ISOTHERMAL FRICTION STIR WELDING". United States.
@article{osti_1721705,
title = {A FEASIBILITY STUDY ON CRACK REPAIR IN AUSTENITIC STAINLESS STEEL DRY STORAGE CANISTERS USING ISOTHERMAL FRICTION STIR WELDING},
author = {Bhattacharyya, Madhumanti and Charit, Indrajit and Raja, Krishnan and Darsell, Jens T. and Jana, Saumyadeep},
abstractNote = {In recent time, solid state crack repair techniques in spent nuclear fuel dry storage canisters (SNF-DSC) have garnered significant interest. Plates of austenitic stainless steels are usually arc welded to fabricate the cylindrical canisters which are prone to chloride-induced stress corrosion cracking. Friction stir welding (FSW) is considered to be a potential candidate for damage repair. In this work, electrical discharge machining was used to simulate cracks in 304L stainless steel plates of 12.7 mm thickness. Subsequently, isothermal FSW was carried out at two different temperatures (725 and 825°C) in order to repair the simulated crack. Microstructure-mechanical property correlations in FSWed plates were studied in detail. Significant grain refinement observed in the stir zone (SZ) was attributed to dynamic recrystallization occurring during FSW. A comparison of Vickers microhardness showed higher hardness and homogeneity in the 725°C SZ than its 825°C counterpart. The fraction of S3 boundary is found to be low in the SZ as compared to base metal (BM). Yield strength of the joints was found to be approximately 100 MPa higher than that of the BM accompanied by a drop in ductility by a factor of 2. Residual stress profile across 825°C weld was measured using x-ray diffraction.},
doi = {},
url = {https://www.osti.gov/biblio/1721705}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {9}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: