skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Integrated development and testing plan for the plutonium immobilization project

Abstract

This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Projectmore » is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.« less

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Fissile Materials Disposition, Washington, DC (US)
OSTI Identifier:
16772
Report Number(s):
UCRL-ID-131608
ON: DE98058632; BR: GA0102011; TRN: US200507%%79
DOE Contract Number:  
W-7405-Eng-48
Resource Type:
Technical Report
Resource Relation:
Other Information: Supercedes report DE98058632; PBD: 01 Jul 1998; PBD: 1 Jul 1998
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 29 ENERGY PLANNING, POLICY AND ECONOMY; CERAMICS; CONSTRUCTION; CONTAINERS; DESIGN; ENVIRONMENTAL IMPACT STATEMENTS; FISSILE MATERIALS; GLASS; LICENSING; PERFORMANCE TESTING; PLUTONIUM; RADIOACTIVE WASTE MANAGEMENT; STORAGE; TESTING; WASTES; WEAPONS

Citation Formats

Kan, T. Integrated development and testing plan for the plutonium immobilization project. United States: N. p., 1998. Web. doi:10.2172/16772.
Kan, T. Integrated development and testing plan for the plutonium immobilization project. United States. https://doi.org/10.2172/16772
Kan, T. 1998. "Integrated development and testing plan for the plutonium immobilization project". United States. https://doi.org/10.2172/16772. https://www.osti.gov/servlets/purl/16772.
@article{osti_16772,
title = {Integrated development and testing plan for the plutonium immobilization project},
author = {Kan, T},
abstractNote = {This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.},
doi = {10.2172/16772},
url = {https://www.osti.gov/biblio/16772}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jul 01 00:00:00 EDT 1998},
month = {Wed Jul 01 00:00:00 EDT 1998}
}