skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide-Range Pb Redox and Zintl Phase Transition

Abstract

This paper describes a new, high-performance Pb-based nanocomposite anode material for lithium-ion batteries. A unique nanocomposite structure of Pb@PbO core-shell nanoparticles in a carbon matrix was obtained by a simple high-energy ball milling method using the low-cost starting materials PbO and carbon black. Electrochemical performance tests showed its excellent reversible capacity (ca. 600 mAh/g) and cycle stability (92% retention at 100th cycle), which are one of the best values reported for Pb-based anodes in the literature. Synchrotron X-ray diffraction and absorption techniques revealed the detailed lithium storage mechanism that can be highlighted with the unexpectedly wide reversible Pb redox range (between Pb2+ and Pb4-) and the evolution of Zintl-type LiyPb structures during the electrochemical lithium reaction. Our results provide new insights into the lithium storage mechanism of these Pb-based materials and their potential as low-cost, high-performance anodes.

Authors:
 [1];  [2]; ORCiD logo [3];  [1];  [1];  [4];  [4];  [4];  [1];  [5]; ORCiD logo [1];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States); Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Northwestern Univ., Evanston, IL (United States)
  5. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1668659
Report Number(s):
BNL-219862-2020-JAAM
Journal ID: ISSN 1616-301X
Grant/Contract Number:  
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lead (Pb) anode; alloying; conversion; Zintl phase; lithium-ion batteries

Citation Formats

Han, Jinhyup, Park, Jehee, Bak, Seong‐Min, Son, Seoung‐Bum, Gim, Jihyeon, Villa, Cesar, Hu, Xiaobing, Dravid, Vinayak P., Su, Chi Cheung, Kim, Youngsik, Johnson, Christopher, and Lee, Eungje. New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide-Range Pb Redox and Zintl Phase Transition. United States: N. p., 2020. Web. doi:10.1002/adfm.202005362.
Han, Jinhyup, Park, Jehee, Bak, Seong‐Min, Son, Seoung‐Bum, Gim, Jihyeon, Villa, Cesar, Hu, Xiaobing, Dravid, Vinayak P., Su, Chi Cheung, Kim, Youngsik, Johnson, Christopher, & Lee, Eungje. New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide-Range Pb Redox and Zintl Phase Transition. United States. doi:10.1002/adfm.202005362.
Han, Jinhyup, Park, Jehee, Bak, Seong‐Min, Son, Seoung‐Bum, Gim, Jihyeon, Villa, Cesar, Hu, Xiaobing, Dravid, Vinayak P., Su, Chi Cheung, Kim, Youngsik, Johnson, Christopher, and Lee, Eungje. Sun . "New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide-Range Pb Redox and Zintl Phase Transition". United States. doi:10.1002/adfm.202005362. https://www.osti.gov/servlets/purl/1668659.
@article{osti_1668659,
title = {New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide-Range Pb Redox and Zintl Phase Transition},
author = {Han, Jinhyup and Park, Jehee and Bak, Seong‐Min and Son, Seoung‐Bum and Gim, Jihyeon and Villa, Cesar and Hu, Xiaobing and Dravid, Vinayak P. and Su, Chi Cheung and Kim, Youngsik and Johnson, Christopher and Lee, Eungje},
abstractNote = {This paper describes a new, high-performance Pb-based nanocomposite anode material for lithium-ion batteries. A unique nanocomposite structure of Pb@PbO core-shell nanoparticles in a carbon matrix was obtained by a simple high-energy ball milling method using the low-cost starting materials PbO and carbon black. Electrochemical performance tests showed its excellent reversible capacity (ca. 600 mAh/g) and cycle stability (92% retention at 100th cycle), which are one of the best values reported for Pb-based anodes in the literature. Synchrotron X-ray diffraction and absorption techniques revealed the detailed lithium storage mechanism that can be highlighted with the unexpectedly wide reversible Pb redox range (between Pb2+ and Pb4-) and the evolution of Zintl-type LiyPb structures during the electrochemical lithium reaction. Our results provide new insights into the lithium storage mechanism of these Pb-based materials and their potential as low-cost, high-performance anodes.},
doi = {10.1002/adfm.202005362},
journal = {Advanced Functional Materials},
issn = {1616-301X},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries
journal, October 2013


Low-Cost Metallic Anode Materials for High Performance Rechargeable Batteries
journal, July 2017

  • Wang, Meng; Zhang, Fan; Lee, Chun-Sing
  • Advanced Energy Materials, Vol. 7, Issue 23
  • DOI: 10.1002/aenm.201700536

Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries
journal, May 2018


Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance
journal, January 2017


Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries
journal, February 2016

  • Kennedy, Tadhg; Brandon, Michael; Ryan, Kevin M.
  • Advanced Materials, Vol. 28, Issue 27
  • DOI: 10.1002/adma.201503978

Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
journal, September 2014


Li-alloy based anode materials for Li secondary batteries
journal, January 2010

  • Park, Cheol-Min; Kim, Jae-Hun; Kim, Hansu
  • Chemical Society Reviews, Vol. 39, Issue 8, p. 3115-3141
  • DOI: 10.1039/b919877f

Low-cost and environmentally benign selenides as promising thermoelectric materials
journal, December 2018


Applying life cycle inventory to reverse supply chains: a case study of lead recovery from batteries
journal, March 2003

  • Daniel, Stavros E.; Pappis, Costas P.; Voutsinas, Theodore G.
  • Resources, Conservation and Recycling, Vol. 37, Issue 4
  • DOI: 10.1016/S0921-3449(02)00070-8

The future of automotive lithium-ion battery recycling: Charting a sustainable course
journal, December 2014


Electrochemical Alloying of Lithium in Organic Electrolytes
journal, January 1971

  • Dey, A. N.
  • Journal of The Electrochemical Society, Vol. 118, Issue 10
  • DOI: 10.1149/1.2407783

Electrochemical properties of metal oxides as anode materials for lithium ion batteries
journal, May 2002

  • Lipparoni, F. R.; Bonino, F.; Panero, S.
  • Ionics, Vol. 8, Issue 3-4
  • DOI: 10.1007/BF02376066

Lead-based systems as suitable anode materials for Li-ion batteries
journal, February 2003


Communication—Stages in the Dynamic Electrochemical Lithiation of Lead
journal, January 2016

  • Wood, Sean M.; Pham, Codey H.; Heller, Adam
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.1251606jes

Dimensionally stable Li-alloy electrodes for secondary batteries
journal, August 1990


Bottom-up synthesis of large-scale graphene oxide nanosheets
journal, January 2012

  • Tang, Libin; Li, Xueming; Ji, Rongbin
  • Journal of Materials Chemistry, Vol. 22, Issue 12
  • DOI: 10.1039/c2jm15944a

Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures
journal, July 2018


Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects
journal, January 2012

  • Biswas, Abhijit; Bayer, Ilker S.; Biris, Alexandru S.
  • Advances in Colloid and Interface Science, Vol. 170, Issue 1-2
  • DOI: 10.1016/j.cis.2011.11.001

On the crystal structure of tetragonal (red) PbO
journal, December 1961


Neutron-diffraction study of orthorhombic lead monoxide
journal, January 1961


Lead: properties, history, and applications
journal, July 2018


Lead oxides as cathode materials for voltage-compatible lithium cells
journal, June 1986


Spray Pyrolyzed PbO-Carbon Nanocomposites as Anode for Lithium-Ion Batteries
journal, January 2006

  • Ng, S. H.; Wang, J.; Konstantinov, K.
  • Journal of The Electrochemical Society, Vol. 153, Issue 4
  • DOI: 10.1149/1.2172570

Highly stable cycling of a lead oxide/copper nanocomposite as an anode material in lithium ion batteries
journal, January 2015

  • Li, Cheng-Hung; Sengodu, Prakash; Wang, Di-Yan
  • RSC Advances, Vol. 5, Issue 62
  • DOI: 10.1039/C5RA07948A

Lead Oxide Microparticles Coated by Ethylenediamine-Cross-Linked Graphene Oxide for Lithium Ion Battery Anodes
journal, April 2019

  • Guo, Alan; Chen, Eric; Wygant, Bryan R.
  • ACS Applied Energy Materials, Vol. 2, Issue 5
  • DOI: 10.1021/acsaem.9b00401

A Stable Lead (II) Oxide-Carbon Composite Anode Candidate for Secondary Lithium Batteries
journal, January 2020

  • Weeks, Jason A.; Zuiker, Max J.; Srinivasan, Hrishikesh S.
  • Journal of The Electrochemical Society, Vol. 167, Issue 6
  • DOI: 10.1149/1945-7111/ab8116

Lead oxides as cathode for lithium non-aqueous cells
journal, June 1981


The true crystal structure of Li17M4 (M=Ge, Sn, Pb)–revised from Li22M5
journal, November 2001

  • Goward, G. R.; Taylor, N. J.; Souza, D. C. S.
  • Journal of Alloys and Compounds, Vol. 329, Issue 1-2, p. 82-91
  • DOI: 10.1016/S0925-8388(01)01567-5

Lithium alloy negative electrodes formed from convertible oxides
journal, December 1998


PbO@C core–shell nanocomposites as an anode material of lithium-ion batteries
journal, April 2009


Electrochemical Performance of Nanostructured PbO@C Obtained by Sol–Gel Method
journal, March 2016


Reaction Mechanism of “SiO”-Carbon Composite-Negative Electrode for High-Capacity Lithium-Ion Batteries
journal, January 2012

  • Yamada, Masayuki; Inaba, Akira; Ueda, Atsushi
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.018210jes

Nanocomposite of Amorphous Ge and Sn Nanoparticles as an Anode Material for Li Secondary Battery
journal, January 2009

  • Kim, Min Gyu; Cho, Jaephil
  • Journal of The Electrochemical Society, Vol. 156, Issue 4
  • DOI: 10.1149/1.3073877

Potential-Resolved In Situ X-ray Absorption Spectroscopy Study of Sn and SnO 2 Nanomaterial Anodes for Lithium-Ion Batteries
journal, January 2016

  • Pelliccione, Christopher J.; Timofeeva, Elena V.; Segre, Carlo U.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 10
  • DOI: 10.1021/acs.jpcc.5b12279

Li21Si5, a Zintl phase as well as a Hume-Rothery phase
journal, September 1987


Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements
journal, March 2011

  • Scharfe, Sandra; Kraus, Florian; Stegmaier, Saskia
  • Angewandte Chemie International Edition, Vol. 50, Issue 16
  • DOI: 10.1002/anie.201001630

Lithium-Richest Phase of Lithium Tetrelides Li 17 Tt 4 (Tt = Si, Ge, Sn, and Pb) as an Electride
journal, July 2019

  • Tsuji, Yuta; Hashimoto, Wataru; Yoshizawa, Kazunari
  • Bulletin of the Chemical Society of Japan, Vol. 92, Issue 7
  • DOI: 10.1246/bcsj.20190040

Rational Design of Hierarchically Open‐Porous Spherical Hybrid Architectures for Lithium‐Ion Batteries
journal, December 2018

  • Yun, Sol; Bak, Seong‐Min; Kim, Sanghyeon
  • Advanced Energy Materials, Vol. 9, Issue 6
  • DOI: 10.1002/aenm.201802816

Double-slit photoelectron interference in strong-field ionization of the neon dimer
journal, January 2019


Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
journal, November 2019

  • Fang, Shan; Bresser, Dominic; Passerini, Stefano
  • Advanced Energy Materials, Vol. 10, Issue 1
  • DOI: 10.1002/aenm.201902485

Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study
journal, January 2018


Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries
journal, January 2015

  • Heine, Jennifer; Hilbig, Peter; Qi, Xin
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0011507jes

Tin and tin-based intermetallics as new anode materials for lithium-ion cells
journal, March 2001


Structural Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling
journal, January 2014

  • Wang, Jiangwei; Fan, Feifei; Liu, Yang
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0041411jes

Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries
journal, January 2005

  • Jung, Yoon Seok; Lee, Kyu T.; Ryu, Ji Heon
  • Journal of The Electrochemical Society, Vol. 152, Issue 7
  • DOI: 10.1149/1.1933616

Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes
journal, January 2012

  • Dalavi, Swapnil; Guduru, Pradeep; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.076205jes

Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode
journal, January 2013


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research
journal, July 2018