skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near-Zero Power MOF-Based Sensors for NO 2 Detection

Abstract

Detection and capture of toxic nitrogen oxides (NO x) is important for emissions control of exhaust gases and general public health. The ability to directly electrically detect trace (0.5–5 ppm) NO 2 by a metal–organic framework (MOF)-74-based sensor at relatively low temperatures (50 °C) is demonstrated via changes in electrical properties of M-MOF-74, M = Co, Mg, Ni. The magnitude of the change is ordered Ni > Co > Mg and explained by each variant's NO 2 adsorption capacity and specific chemical interaction. Ni-MOF-74 provides the highest sensitivity to NO 2; a 725× decrease in resistance at 5 ppm NO2 and detection limit <0.5 ppm, levels relevant for industry and public health. Furthermore, the Ni-MOF-74-based sensor is selective to NO 2 over N 2, SO 2, and air. Linking this fundamental research with future technologies, the high impedance of MOF-74 enables applications requiring a near-zero power sensor or dosimeter, with the active material drawing <15 pW for a macroscale device 35 mm 2 with 0.8 mg MOF-74. Finally, this represents a 10 4–10 6× decrease in power consumption compared to other MOF sensors and demonstrates the potential for MOFs as active components for long-lived, near-zero power chemical sensors in smartmore » industrial systems and the internet of things.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1667400
Report Number(s):
SAND-2020-8671J
Journal ID: ISSN 1616-301X; 690069
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
impedance spectroscopy; metal-organic framework; nanoporous; near-zero power; NO2

Citation Formats

Small, Leo J., Henkelis, Susan E., Rademacher, David X., Schindelholz, Mara E., Krumhansl, James L., Vogel, Dayton J., and Nenoff, Tina M. Near-Zero Power MOF-Based Sensors for NO2 Detection. United States: N. p., 2020. Web. doi:10.1002/adfm.202006598.
Small, Leo J., Henkelis, Susan E., Rademacher, David X., Schindelholz, Mara E., Krumhansl, James L., Vogel, Dayton J., & Nenoff, Tina M. Near-Zero Power MOF-Based Sensors for NO2 Detection. United States. doi:10.1002/adfm.202006598.
Small, Leo J., Henkelis, Susan E., Rademacher, David X., Schindelholz, Mara E., Krumhansl, James L., Vogel, Dayton J., and Nenoff, Tina M. Sun . "Near-Zero Power MOF-Based Sensors for NO2 Detection". United States. doi:10.1002/adfm.202006598.
@article{osti_1667400,
title = {Near-Zero Power MOF-Based Sensors for NO2 Detection},
author = {Small, Leo J. and Henkelis, Susan E. and Rademacher, David X. and Schindelholz, Mara E. and Krumhansl, James L. and Vogel, Dayton J. and Nenoff, Tina M.},
abstractNote = {Detection and capture of toxic nitrogen oxides (NOx) is important for emissions control of exhaust gases and general public health. The ability to directly electrically detect trace (0.5–5 ppm) NO2 by a metal–organic framework (MOF)-74-based sensor at relatively low temperatures (50 °C) is demonstrated via changes in electrical properties of M-MOF-74, M = Co, Mg, Ni. The magnitude of the change is ordered Ni > Co > Mg and explained by each variant's NO2 adsorption capacity and specific chemical interaction. Ni-MOF-74 provides the highest sensitivity to NO2; a 725× decrease in resistance at 5 ppm NO2 and detection limit <0.5 ppm, levels relevant for industry and public health. Furthermore, the Ni-MOF-74-based sensor is selective to NO2 over N2, SO2, and air. Linking this fundamental research with future technologies, the high impedance of MOF-74 enables applications requiring a near-zero power sensor or dosimeter, with the active material drawing <15 pW for a macroscale device 35 mm2 with 0.8 mg MOF-74. Finally, this represents a 104–106× decrease in power consumption compared to other MOF sensors and demonstrates the potential for MOFs as active components for long-lived, near-zero power chemical sensors in smart industrial systems and the internet of things.},
doi = {10.1002/adfm.202006598},
journal = {Advanced Functional Materials},
issn = {1616-301X},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 13, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Vehicular Emissions in Review
journal, April 2016


Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust
journal, May 2014


Editors’ Choice—Review—Recent Advances in Mixed Potential Sensors
journal, January 2020

  • Ramaiyan, Kannan Pasupathikovil; Mukundan, Rangachary
  • Journal of The Electrochemical Society, Vol. 167, Issue 3
  • DOI: 10.1149/1945-7111/ab67ab

Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture
journal, September 2019

  • Rieth, Adam J.; Wright, Ashley M.; Dincă, Mircea
  • Nature Reviews Materials, Vol. 4, Issue 11
  • DOI: 10.1038/s41578-019-0140-1

How Well Do Metal–Organic Frameworks Tolerate Flue Gas Impurities?
journal, October 2012

  • Ding, Lifeng; Yazaydin, A. Özgür
  • The Journal of Physical Chemistry C, Vol. 116, Issue 43
  • DOI: 10.1021/jp308717y

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

A Calixarene-Based Metal-Organic Framework for Highly Selective NO 2 Detection
journal, August 2018

  • Schulz, Marcel; Gehl, Adrian; Schlenkrich, Jakob
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201805355

Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework
journal, June 2018


Interaction of Acid Gases SO 2 and NO 2 with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co)
journal, May 2017


Exceptional Behavior over the Whole Adsorption−Storage−Delivery Cycle for NO in Porous Metal Organic Frameworks
journal, August 2008

  • McKinlay, Alistair C.; Xiao, Bo; Wragg, David S.
  • Journal of the American Chemical Society, Vol. 130, Issue 31
  • DOI: 10.1021/ja801997r

NO x Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks
journal, October 2019

  • Sava Gallis, Dorina F.; Vogel, Dayton J.; Vincent, Grace A.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 46
  • DOI: 10.1021/acsami.9b16470

Interactions of NO 2 with Zr-Based MOF: Effects of the Size of Organic Linkers on NO 2 Adsorption at Ambient Conditions
journal, December 2012

  • Ebrahim, Amani M.; Levasseur, Benoit; Bandosz, Teresa J.
  • Langmuir, Vol. 29, Issue 1
  • DOI: 10.1021/la302869m

Selective decontamination of the reactive air pollutant nitrous acid via node-linker cooperativity in a metal–organic framework
journal, January 2019

  • McGrath, Devon T.; Ryan, Michaela D.; MacInnis, John J.
  • Chemical Science, Vol. 10, Issue 21
  • DOI: 10.1039/C9SC01357A

Direct Electrical Detection of Iodine Gas by a Novel Metal–Organic-Framework-Based Sensor
journal, December 2017

  • Small, Leo J.; Nenoff, Tina M.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 51
  • DOI: 10.1021/acsami.7b16381

Reversible MOF-Based Sensors for the Electrical Detection of Iodine Gas
journal, July 2019

  • Small, Leo J.; Hill, Ryan C.; Krumhansl, James L.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 31
  • DOI: 10.1021/acsami.9b09938

Highly sensitive and selective SO 2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode
journal, January 2018

  • Chernikova, Valeriya; Yassine, Omar; Shekhah, Osama
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/C7TA10538J

Direct Self-Assembly of Conductive Nanorods of Metal–Organic Frameworks into Chemiresistive Devices on Shrinkable Polymer Films
journal, July 2016


Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing
journal, March 2019

  • Strauss, Ina; Mundstock, Alexander; Treger, Marvin
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 15
  • DOI: 10.1021/acsami.8b22002

Chemiresistive Sensing of Ambient CO 2 by an Autogenously Hydrated Cu 3 (hexaiminobenzene) 2 Framework
journal, June 2019


Metal-Organic Frameworks for Sensing Applications in the Gas Phase
journal, March 2009

  • Achmann, Sabine; Hagen, Gunter; Kita, Jaroslaw
  • Sensors, Vol. 9, Issue 3
  • DOI: 10.3390/s90301574

Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate) 2 ] by Gas Adsorption
journal, March 2019

  • Aubrey, Michael L.; Kapelewski, Matthew T.; Melville, Jonathan F.
  • Journal of the American Chemical Society, Vol. 141, Issue 12
  • DOI: 10.1021/jacs.9b00654

Van der Waals Heterostructured MOF‐on‐MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing
journal, October 2019

  • Yao, Ming‐Shui; Xiu, Jing‐Wei; Huang, Qing‐Qing
  • Angewandte Chemie International Edition, Vol. 58, Issue 42
  • DOI: 10.1002/anie.201907772

Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn)
journal, January 2018

  • de Oliveira, Aline; de Lima, Guilherme Ferreira; De Abreu, Heitor Avelino
  • Chemical Physics Letters, Vol. 691
  • DOI: 10.1016/j.cplett.2017.11.027

Structural, elastic, thermal, and electronic responses of small-molecule-loaded metal–organic framework materials
journal, January 2015

  • Canepa, Pieremanuele; Tan, Kui; Du, Yingjie
  • Journal of Materials Chemistry A, Vol. 3, Issue 3
  • DOI: 10.1039/C4TA03968H

Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices
journal, December 2013

  • Talin, A. Alec; Centrone, Andrea; Ford, Alexandra C.
  • Science, Vol. 343, Issue 6166, p. 66-69
  • DOI: 10.1126/science.1246738

Million-Fold Electrical Conductivity Enhancement in Fe 2 (DEBDC) versus Mn 2 (DEBDC) (E = S, O)
journal, May 2015

  • Sun, Lei; Hendon, Christopher H.; Minier, Mikael A.
  • Journal of the American Chemical Society, Vol. 137, Issue 19
  • DOI: 10.1021/jacs.5b02897

An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
journal, January 2017

  • Stassen, Ivo; Burtch, Nicholas; Talin, Alec
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00122C

An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof
journal, January 2018

  • Bhardwaj, Sanjeev K.; Bhardwaj, Neha; Kaur, Rajnish
  • Journal of Materials Chemistry A, Vol. 6, Issue 31
  • DOI: 10.1039/C8TA04220A

Gradual Release of Strongly Bound Nitric Oxide from Fe 2 (NO) 2 (dobdc)
journal, March 2015

  • Bloch, Eric D.; Queen, Wendy L.; Chavan, Sachin
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5132243

Is iron unique in promoting electrical conductivity in MOFs?
journal, January 2017

  • Sun, Lei; Hendon, Christopher H.; Park, Sarah S.
  • Chemical Science, Vol. 8, Issue 6
  • DOI: 10.1039/C7SC00647K

Water based scale-up of CPO-27 synthesis for nitric oxide delivery
journal, January 2016

  • Cattaneo, Damiano; Warrender, Stewart J.; Duncan, Morven J.
  • Dalton Transactions, Vol. 45, Issue 2
  • DOI: 10.1039/C5DT03955J

Tuning the nitric oxide release from CPO-27 MOFs
journal, January 2016

  • Cattaneo, Damiano; Warrender, Stewart J.; Duncan, Morven J.
  • RSC Advances, Vol. 6, Issue 17
  • DOI: 10.1039/C5RA24023A

IR spectroscopic study of NOxadsorption and NOx–O2coadsorption on Co2+/SiO2catalysts
journal, January 1997

  • Djonev, Boyan; Tsyntsarski, Boyko; Klissurski, Dimitar
  • Journal of the Chemical Society, Faraday Transactions, Vol. 93, Issue 22
  • DOI: 10.1039/a703955g

Chemistry of SO2 and NO2 on ZnO(0001)-Zn and ZnO powders: changes in reactivity with surface structure and composition
journal, February 2001

  • Rodriguez, José A.; Jirsak, Tomas; Chaturvedi, Sanjay
  • Journal of Molecular Catalysis A: Chemical, Vol. 167, Issue 1-2
  • DOI: 10.1016/S1381-1169(00)00489-1

Low temperature synthesis study of metal–organic framework CPO-27: investigating metal, solvent and base effects down to −78 °C
journal, January 2017

  • Vornholt, Simon M.; Henkelis, Susan E.; Morris, Russell E.
  • Dalton Transactions, Vol. 46, Issue 25
  • DOI: 10.1039/C7DT01223C