skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: US East Coast synthetic aperture radar wind atlas for offshore wind energy

Abstract

We present the first synthetic aperture radar (SAR) offshore wind atlas of the US East Coast from Georgia to the Canadian border. Images from RADARSAT-1, Envisat, and Sentinel-1A/B are processed to wind maps using the geophysical model function (GMF) CMOD5.N. Extensive comparisons with 6008 collocated buoy observations of the wind speed reveal that biases of the individual systems range from -0.8 to 0.6 m s -1. Unbiased wind retrievals are crucial for producing an accurate wind atlas, and intercalibration of the SAR observations is therefore applied. Wind retrievals from the intercalibrated SAR observations show biases in the range of to -0.2 to 0.0 m s -1, while at the same time improving the root-mean-squared error from 1.67 to 1.46 m s -1. The intercalibrated SAR observations are, for the first time, aggregated to create a wind atlas at the height 10 m a.s.l. (above sea level). The SAR wind atlas is used as a reference to study wind resources derived from the Wind Integration National Dataset Toolkit (WTK), which is based on 7 years of modelling output from the Weather Research and Forecasting (WRF) model. Comparisons focus on the spatial variation in wind resources and show that model outputs lead to lower coastal wind speed gradients than those derived frommore » SAR. Areas designated for offshore wind development by the Bureau of Ocean Energy Management are investigated in more detail; the wind resources in terms of the mean wind speed show spatial variations within each designated area between 0.3 and 0.5 m s -1 for SAR and less than 0.2m s -1 for the WTK. Our findings indicate that wind speed gradients and variations might be underestimated in mesoscale model outputs along the US East Coast.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [3];  [4]; ORCiD logo [1]
  1. DTU Wind Energy, Risø, Roskilde (Denmark)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Global Ocean Associates, Alexandria, VA (United States)
  4. Johns Hopkins Univ., Baltimore, MD (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind Energy Technologies Office (EE-4W)
OSTI Identifier:
1665882
Report Number(s):
NREL/JA-5000-77935
Journal ID: ISSN 2366-7451; MainId:31844;UUID:e1b2283a-c19a-4c37-9f34-4e5daf9881ac;MainAdminID:18570
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Wind Energy Science (Online)
Additional Journal Information:
Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2366-7451
Publisher:
European Wind Energy Association - Copernicus
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; offshore wind energy; WIND Toolkit; synthetic aperture radar; wind atlas

Citation Formats

Ahsbahs, Tobias, Maclaurin, Galen, Draxl, Caroline, Jackson, Christopher R., Monaldo, Frank, and Badger, Merete. US East Coast synthetic aperture radar wind atlas for offshore wind energy. United States: N. p., 2020. Web. doi:10.5194/wes-5-1191-2020.
Ahsbahs, Tobias, Maclaurin, Galen, Draxl, Caroline, Jackson, Christopher R., Monaldo, Frank, & Badger, Merete. US East Coast synthetic aperture radar wind atlas for offshore wind energy. United States. doi:10.5194/wes-5-1191-2020.
Ahsbahs, Tobias, Maclaurin, Galen, Draxl, Caroline, Jackson, Christopher R., Monaldo, Frank, and Badger, Merete. Thu . "US East Coast synthetic aperture radar wind atlas for offshore wind energy". United States. doi:10.5194/wes-5-1191-2020. https://www.osti.gov/servlets/purl/1665882.
@article{osti_1665882,
title = {US East Coast synthetic aperture radar wind atlas for offshore wind energy},
author = {Ahsbahs, Tobias and Maclaurin, Galen and Draxl, Caroline and Jackson, Christopher R. and Monaldo, Frank and Badger, Merete},
abstractNote = {We present the first synthetic aperture radar (SAR) offshore wind atlas of the US East Coast from Georgia to the Canadian border. Images from RADARSAT-1, Envisat, and Sentinel-1A/B are processed to wind maps using the geophysical model function (GMF) CMOD5.N. Extensive comparisons with 6008 collocated buoy observations of the wind speed reveal that biases of the individual systems range from -0.8 to 0.6 m s-1. Unbiased wind retrievals are crucial for producing an accurate wind atlas, and intercalibration of the SAR observations is therefore applied. Wind retrievals from the intercalibrated SAR observations show biases in the range of to -0.2 to 0.0 m s-1, while at the same time improving the root-mean-squared error from 1.67 to 1.46 m s-1. The intercalibrated SAR observations are, for the first time, aggregated to create a wind atlas at the height 10 m a.s.l. (above sea level). The SAR wind atlas is used as a reference to study wind resources derived from the Wind Integration National Dataset Toolkit (WTK), which is based on 7 years of modelling output from the Weather Research and Forecasting (WRF) model. Comparisons focus on the spatial variation in wind resources and show that model outputs lead to lower coastal wind speed gradients than those derived from SAR. Areas designated for offshore wind development by the Bureau of Ocean Energy Management are investigated in more detail; the wind resources in terms of the mean wind speed show spatial variations within each designated area between 0.3 and 0.5 m s-1 for SAR and less than 0.2m s-1 for the WTK. Our findings indicate that wind speed gradients and variations might be underestimated in mesoscale model outputs along the US East Coast.},
doi = {10.5194/wes-5-1191-2020},
journal = {Wind Energy Science (Online)},
issn = {2366-7451},
number = 3,
volume = 5,
place = {United States},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers
journal, January 2002

  • Figa-Saldaña, J.; Wilson, J. J. W.; Attema, E.
  • Canadian Journal of Remote Sensing, Vol. 28, Issue 3
  • DOI: 10.5589/m02-035

Barents Sea seasonal ice zone features and processes from ERS 1 synthetic aperture radar: Seasonal Ice Zone Experiment 1992
journal, July 1999

  • Sandven, Stein; Johannessen, Ola M.; Miles, Martin W.
  • Journal of Geophysical Research: Oceans, Vol. 104, Issue C7
  • DOI: 10.1029/1998JC900050

Inter-calibration of SAR data series for offshore wind resource assessment
journal, October 2019


Ocean Wind Speed Climatology from Spaceborne SAR Imagery
journal, April 2014

  • Monaldo, Frank M.; Li, Xiaofeng; Pichel, William G.
  • Bulletin of the American Meteorological Society, Vol. 95, Issue 4
  • DOI: 10.1175/BAMS-D-12-00165.1

Wind stress on a water surface
journal, October 1955

  • Charnock, H.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 81, Issue 350
  • DOI: 10.1002/qj.49708135027

Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF
journal, April 2010


Offshore new European wind atlas
journal, June 2018


Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters
journal, April 2013

  • Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi
  • Remote Sensing, Vol. 5, Issue 4
  • DOI: 10.3390/rs5041956

Improving the Mapping and Prediction of Offshore Wind Resources (IMPOWR): Experimental Overview and First Results
journal, August 2016

  • Colle, Brian A.; Sienkiewicz, Matthew J.; Archer, Cristina
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 8
  • DOI: 10.1175/BAMS-D-14-00253.1

Wind Class Sampling of Satellite SAR Imagery for Offshore Wind Resource Mapping
journal, December 2010

  • Badger, Merete; Badger, Jake; Nielsen, Morten
  • Journal of Applied Meteorology and Climatology, Vol. 49, Issue 12
  • DOI: 10.1175/2010JAMC2523.1

Characterization of Low-Level Winds of Southern and Coastal Delaware
journal, January 2015

  • Hughes, Christopher P.; Veron, Dana E.
  • Journal of Applied Meteorology and Climatology, Vol. 54, Issue 1
  • DOI: 10.1175/JAMC-D-14-0011.1

Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT
journal, January 2015

  • Hasager, Charlotte B.; Mouche, Alexis; Badger, Merete
  • Remote Sensing of Environment, Vol. 156
  • DOI: 10.1016/j.rse.2014.09.030

Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite: Wind characteristics from QuikSCAT
journal, October 2012

  • Karagali, Ioanna; Peña, Alfredo; Badger, Merete
  • Wind Energy, Vol. 17, Issue 1
  • DOI: 10.1002/we.1565

A C-Band Geophysical Model Function for Determining Coastal Wind Speed Using Synthetic Aperture Radar
journal, July 2018

  • Lu, Yiru; Zhang, Biao; Perrie, William
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 11, Issue 7
  • DOI: 10.1109/JSTARS.2018.2836661

Wind climate estimation using WRF model output: method and model sensitivities over the sea: Offshore wind climate estimation using WRF output
journal, December 2014

  • Hahmann, Andrea N.; Vincent, Claire L.; Peña, Alfredo
  • International Journal of Climatology, Vol. 35, Issue 12
  • DOI: 10.1002/joc.4217

Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4
journal, March 1997

  • Stoffelen, Ad; Anderson, David
  • Journal of Geophysical Research: Oceans, Vol. 102, Issue C3
  • DOI: 10.1029/96JC02860

Large CO 2 reductions via offshore wind power matched to inherent storage in energy end-uses
journal, January 2007

  • Kempton, Willett; Archer, Cristina L.; Dhanju, Amardeep
  • Geophysical Research Letters, Vol. 34, Issue 2
  • DOI: 10.1029/2006GL028016

The Wind Integration National Dataset (WIND) Toolkit
journal, August 2015


On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm
journal, January 2018

  • Peña, Alfredo; Schaldemose Hansen, Kurt; Ott, Søren
  • Wind Energy Science, Vol. 3, Issue 1
  • DOI: 10.5194/wes-3-191-2018

Wind resource assessment from C-band SAR
journal, November 2006

  • Bruunchristiansen, M.; Koch, W.; Horstmann, J.
  • Remote Sensing of Environment, Vol. 105, Issue 1
  • DOI: 10.1016/j.rse.2006.06.005

SAR-Based Wind Resource Statistics in the Baltic Sea
journal, January 2011

  • Hasager, Charlotte B.; Badger, Merete; Peña, Alfredo
  • Remote Sensing, Vol. 3, Issue 1
  • DOI: 10.3390/rs3010117

Offshore Coastal Wind Speed Gradients: Issues for the Design and Development of Large Offshore Windfarms
journal, December 2007


Ocean winds from RADARSAT-1 ScanSAR
journal, January 2002

  • Horstmann, Jochen; Koch, Wolfgang; Lehner, Susanne
  • Canadian Journal of Remote Sensing, Vol. 28, Issue 3
  • DOI: 10.5589/m02-043

Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas
journal, October 2015

  • Doubrawa, Paula; Barthelmie, Rebecca J.; Pryor, Sara C.
  • Remote Sensing of Environment, Vol. 168
  • DOI: 10.1016/j.rse.2015.07.008

Cross‐Polarization GMF for High Wind Speed and Surface Stress Retrieval
journal, August 2018

  • Troitskaya, Yu.; Abramov, V.; Baidakov, G.
  • Journal of Geophysical Research: Oceans, Vol. 123, Issue 8
  • DOI: 10.1029/2018JC014090

Extrapolating Satellite Winds to Turbine Operating Heights
journal, April 2016

  • Badger, Merete; Peña, Alfredo; Hahmann, Andrea N.
  • Journal of Applied Meteorology and Climatology, Vol. 55, Issue 4
  • DOI: 10.1175/JAMC-D-15-0197.1

Dual-polarization measurements at C-band over the ocean: results from airborne radar observations and comparison with ENVISAT ASAR data
journal, April 2005

  • Mouche, A. A.; Hauser, D.; Daloze, J. -F.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, Issue 4
  • DOI: 10.1109/TGRS.2005.843951

Theories for the interaction of electromagnetic and oceanic waves ? A review
journal, January 1978

  • Valenzuela, Gaspar R.
  • Boundary-Layer Meteorology, Vol. 13, Issue 1-4
  • DOI: 10.1007/BF00913863

Applications of satellite winds for the offshore wind farm site Anholt
journal, January 2018

  • Ahsbahs, Tobias; Badger, Merete; Volker, Patrick
  • Wind Energy Science, Vol. 3, Issue 2
  • DOI: 10.5194/wes-3-573-2018