skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of PTFE addition on the transfer film, wear and friction of PEEK-CuO composite

Book ·
OSTI ID:163247
;  [1]
  1. Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering

This work was done in part as a follow-up of an earlier study which had showed that CuO was effective in reducing the wear of PEEK, but the coefficient of friction of PEEK increased with the addition of CuO. In order to reduce the coefficient of friction, the organic filler PTFE was added to the CUO-PEEK composite so as to increase its appeal for practical applications. Initially, the optimum volume fraction of CuO in PEEK was determined for minimum wear by varying the proportion of the inorganic filler. With this composition as the basis for total filler content, PTFE was added to CuO-filled composites in 5 and 10 vol.% proportions. The friction and wear behaviors of these composites sliding against a tool steel surface were studied in a pin-on-disk configuration. It was determined from experiment that the optimum filler proportion of CuO in PEEK for minimum wear rate was 35 vol.%. The greater the content of CuO, the higher was the coefficient of friction. The optimum composition with PTFE and Cu additions was PEEK-30 vol.% CuO-5 vol.% PTFE. The wear rate and the coefficient of friction both of these compositions were lower than those of PEEK-35 vol.% CuO. The wear behavior has been analyzed by optical and scanning electron microscopy in terms of the ability of these composites to form transfer film on the steel counterface and the transfer film of PEEK-CuO-PTFE formulation has been investigated by XPS analysis. The XPS results revealed the presence of Cu ions and FeF{sub 2} compounds near the interface of the transfer film and the steel substrate. These observations have been used to support the hypothesis of reduced wear by the addition of inorganic and organic fillers to the polymer material.

OSTI ID:
163247
Report Number(s):
CONF-950116-; ISBN 0-7918-1297-9; TRN: IM9604%%352
Resource Relation:
Conference: 1995 American Society of Mechanical Engineers (ASME) energy sources technology conference and exhibition, Houston, TX (United States), 29 Jan - 1 Feb 1995; Other Information: PBD: 1995; Related Information: Is Part Of Tribology symposium 1995. PD-Volume 72; Masudi, H. [ed.]; PB: 181 p.
Country of Publication:
United States
Language:
English